
by David K.  Campbell No tribute to the legacy of Stan Ularn would be complete without a discussion of 
"nonlinear science," a growing collection of interdisciplinary studies that in the past 
two decades has excited and challenged researchers from nearly every discipline of 
the natural sciences, engineering, and mathematics. Through his own research Stan 
played a major role in founding what we now call nonlinear science, and through his 
encouragement of the work of others, he guided its development. In this survey article 
I will try to weave the thread of Stan's contributions into the pattern of recent successes 
and current challenges of nonlinear science. At the same time I hope to capture some 
of the excitement of research in this area. 

Introduction 

Let me start from a very simple, albeit circular, definition: nonlinear science is the 
study of those mathematical systems and natural phenomena that are not linear. Ever 
attuned to the possibility of bons mots, Stan once remarked that this was "like defining 
the bulk of zoology by calling it the study of 'non-elephant animals'." His point, 
clearly, was that the vast majority of mathematical equations and natural phenomena 
are nonlinear, with linearity being the exceptional, but important, case. 

Linear versus Nonlinear. Mathematically, the essential difference between linear 
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and nonlinear equations is clear. Any two solutions of a linear equation can be added 
together to form a new solution; this is the superposition principle. In fact, a moment 
of serious thought allows one to recognize that superposition is responsible for the 
systematic methods used to solve, independent of other complexities, essentially any 
linear problem. Fourier and Laplace transform methods, for example, depend on being 
able to superpose solutions. Putting it naively, one breaks the problem into many small 
pieces, then adds the separate solutions to get the solution to the whole problem. 

In contrast, two solutions of a nonlinear equation cannot be added together to form 
another solution. Superposition fails. Thus, one must consider a nonlinear problem in 
toto; one cannot-at least not obviously-break the problem into small subproblems 
and add their solutions. It is therefore perhaps not surprising that no general analytic 
approach exists for solving typical nonlinear equations. In fact, as we shall discuss, 
certain nonlinear equations describing chaotic physical motions have no useful analytic 
solutions. 

Physically, the distinction between linear and nonlinear behavior is best abstracted 
from examples. For instance, when water flows through a pipe at low velocity, its 
motion is laminar and is characteristic of linear behavior: regular, predictable, and 
describable in simple analytic mathematical terms. However, when the velocity exceeds 
a critical value, the motion becomes turbulent, with localized eddies moving in a 
complicated, irregular, and erratic way that typifies nonlinear behavior. By reflecting 
on this and other examples, we can isolate at least three characteristics that distinguish 
linear and nonlinear physical phenomena. 

First, the motion itself is qualitatively different. Linear systems typically show 
smooth, regular motion in space and time that can be described in terms of well- 
behaved functions. Nonlinear systems, however, often show transitions from smooth 
motion to chaotic, erratic, or, as we will see later, even apparently random behavior. 
The quantitative description of chaos is one of the triumphs of nonlinear science. 

Second, the response of a linear system to small changes in its parameters or 
to external stimulation is usually smooth and in direct proportion to the stimulation. 
But for nonlinear systems, a small change in the parameters can produce an enormous 
qualitative difference in the motion. Further, the response to an external stimulation 
can be different from the stimulation itself: for example, a periodically driven nonlinear 
system may exhibit oscillations at, say, one-half, one-quarter, or twice the period of the 
stimulation. 

Third, a localized "lump," or pulse, in a linear system will normally decay by 
spreading out as time progresses. This phenomenon, known as dispersion, causes waves 
in linear systems to lose their identity and die out, such as when low-amplitude water 
waves disappear as they move away from the original disturbance. In contrast, nonlinear 
systems can have highly coherent, stable localized structures-such as the eddies in 
turbulent flow-that persist either for long times or, in some idealized mathematical 
models, for all time. The remarkable order reflected by these persistent coherent 
structures stands in sharp contrast to the irregular, erratic motion that they themselves 
can undergo. 

To go beyond these qualitative distinctions, let me start with a very simple physical 
system-the plane pendulum-that is a classic example in at least two senses. First, it 
is a problem that all beginning students solve; second, it is a classic illustration of how 
we mislead our students about the prevalence and importance of nonlinearity. 

Applying Newton's law of motion to the plane pendulum shown in Fig. 1 yields 
an ordinary second-order differential equation describing the time evolution: 

THE SIMPLE PENDULUM 

Fig. 1. It can be seen that a nonlinear equa- 
tion describes the motion of the simple, plane 
pendulum when, in accordance with Newton's 
force law, the component of the gravitational 
force in the angular direction, -mg sin 0(t), is 
set equal to the rate of change of the momen- 
tum, ml d20(t)/dt2, in that direction. 

\ 
-mg sin 8(t)  

where 8 is the angular displacement of the pendulum from the vertical, 1 is the length 
of the arm, and g is the acceleration due to gravity. Equation 1 is obviously nonlinear 
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because sin(& + 62) + sin 6, + sin 02. 
What happens, however, if we go to the regime of small displacements? The 

Taylor expansion of sin0 (w 0 - $ + Â .) tells us that for small 6 the equation is 
approximately linear: 

d2Q(t) + %(t) w 0. 
dt2 I 

The general solution to the linear equation is the superposition of two terms, 

Q(t) = - - sin wt + Qo cos wt, (::) 
where Qo and (d0/dt)o are the angle and angular velocity at the initial time and the 
frequency w is a constant given by w = \/gJl. 

Equation 3 is the mathematical embodiment of Galilee's famous observation that 
the frequency of a pendulum is independent of its amplitude. But in fact the result 
is a consequence of the linear approximation, valid only for small oscillations. If 
the pendulum undergoes very large displacements from the vertical, its motion enters 
the nonlinear regime, and one finds that the frequency depends on amplitude, larger 
excursions having longer periods (see "The Simple But Nonlinear Pendulum"). Of 
course, grandfather clocks would keep terrible time if the linear equation were not a 
good approximation; nonetheless, it remains an approximation, valid only for small- 
amplitude motion. 

The distinction between the full nonlinear model of the pendulum and its linear 
approximation becomes substantially more striking when one studies the pendulum's 
response to an external stimulus. With both effects of friction and a periodic driving 
force added, the pendulum equation (Eq. 1) becomes 

where a is a measure of the frictional force and I? and f2 are the amplitude and 
frequency, respectively, of the driving force. In the regime of small displacements, this 
reduces to the linear equation 

A closed-form solution to the linear equation can still be obtained, and the motion can 
be described analytically for all time. For certain values of a, I?, and f2, the solution 
to even the nonlinear equation is periodic and quite similar to that of the linear model. 
For other values, however, the solution behaves in a complex, seemingly random, 
unpredictable manner. In this chaotic regime, as we shall later see, the motion of this 
very simple nonlinear system defies analytic description and can indeed be as random 
as a coin toss. 

Dynamical Systems: From Simple to Complex. Both the free pendulum and its 
damped, driven counterpart are particular examples of dynamical systems. The free 
pendulum is a conservative dynamical system-energy is constant in time-whereas 
the damped, driven pendulum is a dissipative system-energy is not conserved. Loosely 
speaking, a dynamical system can be thought of as anything that evolves in time 
according to a well-defined rule. More specifically, the variables in a dynamical system, 
such as q and p,  the canonical position and momentum, respectively, have a rate of 
change at a given time that is a function of the values of the variables themselves at that 
time: q(t) = f (q(t), (t)) and p(t) = g (q (t), p(t)) (where a dot signifies differentiation 
with respect to time). The abstract "space" defined by these variables is called the phase 
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HARMONIC-OSCILLATOR 
PHASE SPACE 

Fig. 2. The behavior of the simple pendu- 
lum is here represented by constant-energy 
contours in 8-6 (roughly, position-momentum) 
phase space. The closed curves around the 
origin ( E  < 2mgI) represent librations, or pe- 
riodic oscillations, whereas the open, "wavy" 
lines for large magnitudes of 6 (E  > 2mgl) 
correspond to motions in which the pendulum 
moves completely around its pivot in either a 
clockwise (6 < 0) or counterclockwise (6 > 0) 
sense, causing 8 to increase in magnitude be- 
yond 2ir. (Figure courtesy of Roger Eckhardt, 
Los Alamos National Laboratory.) 

space, and its dimension is clearly related to the number of variables in the dynamical 
system. 

In the case of the free pendulum, the angular position and velocity at any instant 
determine the subsequent motion. Hence, as discussed in "The Simple But Nonlinear 
Pendulum," the pendulum's behavior can be described by the motion of a point in 
the two-dimensional phase space with coordinates 6 and 6  (Fig. 2). In the traditional 
parlance of mechanics, the free pendulum is a Hamiltonian system having "one degree 

of freedom," since it has only one spatial variable (0) and one generalized momentum 
(roughly, 6 ) .  Further, as discussed in the sidebar, this system is completely integrable, 
which in effect means that its motion for all time can be solved for analytically in terms 
of the initial values of the variables. 

More typically, dynamical systems involve many degrees of freedom and thus have 
high-dimensional phase spaces. Further, they are in general not completely integrable. 
An example of a many-degree-of-freedom system particularly pertinent to our current 
discussion is the one first studied by Enrico Fermi, John Pasta, and Stan Ulam in the 
mid-fifties: a group of particles coupled together by nonlinear springs and constrained 
to move only in one dimension. Now celebrated as the "FPU problem," the model 
for the system consists of a large set of coupled, ordinary differential equations for the 
time evolution of the particles (see "The Fermi, Pasta, and Ulam Problem: Excerpts 
from 'Studies of Nonlinear Problems'"). Specifically, one particular version of the 
FPU problem has 64 particles obeying the equations 

where a is the measure of the strength of the nonlinear interaction between neighboring 
particles. Thus there are 64 degrees of freedom and, consequently, a 128-dimensional 
phase space. 

Still more complicated, at least a priori, are continuous nonlinear dynamical 
systems, such as fluids. Here one must define dynamical variables-such as the 
density p(x, t)-at every point in space. Hence the number of degrees of freedom, 
and accordingly the phase-space dimension, becomes infinite; further, the resulting 
equations of motion become nonlinear partial differential equations. Note that one can 
view these continuous dynamical systems as the limits of large discrete systems and 
understand their partial differential equations as the limits of many coupled ordinary 
differential equations. 

We can illustrate this approach using a continuous nonlinear dynamical system 
that will be important in our later discussion. Hopefully, this example will pique the 
reader's interest, for it also indicates how elegantly perverse nonlinearity can be. The 
system is represented by the so-called sine-Gordon equation 

$0 8 0  
-- - + sin 6 = 0, 
Qt2 Qx2 (7) 
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where the dependent variable 6 = 6(x, t) is a measure of the response of the system at 
position x and time t .  

Computationally, one natural way to deal with this system is to introduce a discrete 
spatial grid with spacing Â : such that the position at the nth point in the grid is given 
by x,, = n Ax and define &(t) = 6(xn, t) for n = 1,2,  . . . N. Using a finite difference 
approximation for the second derivative, 

leads to a set of N coupled ordinary differential equations 

This is a finite degree-of-freedom dynarnical system, like the FPU problem. In partic- 
ular, it is just a set of simple plane pendula, coupled together by the discretized spatial 
derivative. Of course, the continuous sine-Gordon equation is recovered in the limit 
that N -+ oo (and thus Ax 4 0). The perverseness of nonlinearity is that whereas 
the Hamiltonian dynamical system described by a finite number N of coupled ordinary 
differential equations is not completely integrable, the infinite-dimensional Hamilto- 
nian system described by the continuum sine-Gordon equation is! Further, as we shall 
later demonstrate, the latter system possesses localized "lump" solutions-the famed 
solitons-that persist for all time. 

Hopefully, this digression on dynamical systems has made the subtlety of nonlin- 
ear phenomena quite apparent: very simple nonlinear systems-such as the damped, 
driven pendulum~can exhibit chaos involving extremely complex, apparently random 
motions, while very complicated systems-such as the one described by the sine-Gordon 
equat ion~can exhibit remarkable manifestations of order. The challenge to researchers 
in this field is to determine which to expect and when. 

Paradigms of Nonlinearity. Before examining in some detail how this challenge is 
being confronted, we need to respond to some obvious but important questions. First, 
why study nonlinear science, rather than nonlinear chemistry, or nonlinear physics, or 
nonlinear biology? Nonlinear science sounds impossibly broad, too interdisciplinary, 
or "the study of everything." However, the absence of a systematic mathematical 
framework and the complexity of natural nonlinear phenomena suggest that nonlinear 
behavior is best comprehended by classifying its various manifestations in many differ- 
ent systems and by identifying and studying their common features. Indeed, both the 
interest and the power of nonlinear science arise precisely because common concepts 
are being discovered about systems in very different areas of mathematics and natural 
sciences. These common concepts, or paradigms, give insight into nonlinear problems 
in a large number of disciplines at once. By understanding these paradigms, one can 
hope to understand the essence of nonlinearity as well as its consequences in many 
fields. 

Second, since it has long been known that most systems are inherently nonlinear, 
why has there been a sudden blossoming of interest in this field in the past twenty years 
or so? Why weren't many of these fundamental problems solved a century ago? On 
reflection, one can identify three recent developments whose synergistic blending has 
made possible revolutionary progress. 

The first, and perhaps most crucial, development has been that of high-speed 
electronic computers, which permit quantitative numerical simulations of nonlinear 
systems. Indeed, the term experimental mathematics has been coined to describe 
computer-based investigations into problems inaccessible to analytic methods. Rather 
than simply confirming quantitatively results already anticipated by qualitative analysis, 
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experimental mathematics uses the computer to generate qualitative insight where none 
has existed before. As the visionary of this development, John von Neumann, wrote 
(in a 1946 article called "On the principles of large scale computing machines"): 

"Our present analytic methods seem unsuitable for the solution of the impor- 
tant problems rising in connection with nonlinear partial differential equations and, 
in fact, with virtually all types of problems in pure mathematics. . . . really efficient 
high-speed computing devices may, in the field of nonlinear partial differential equa- 
tions as well as in many other fields which are now difficult or entirely denied of 
access, provide us with those heuristic hints which are needed in all parts of mathe- 
matics for genuine progress." 

Stan Ulam, together with many of his Los Alarnos colleagues, was one of the very 
first to make this vision a reality. Among Stan's pioneering experimental mathematical 
investigations was the seminal study of the FPU problem mentioned above. Another ex- 
ample was his early numerical work on nonlinear mappings, carried out in collaboration 
with Paul Stein (see "Iteration of Maps, Strange Attractors, and Number Theory-An 
Ulamian Potpourri"). Both of these studies will figure in our later discussion. 

The second crucial development has been the experimental observation of "uni- 
versal" nonlinear characteristics in natural systems that range from chicken hearts and 
chemical reactors to fluids and plasmas. In the past decade these experiments have 
reached previously inaccessible levels of precision, so that one can measure quanti- 
tative similarities in, for example, the route to chaotic behavior among an enormous 
variety of nonlinear systems. 

The third and final development has been in the area of novel analytical mathe- 
matical methods. For instance, the invention of the inverse spectral transform has led 
to a systematic method for the explicit solution of a large number of nonlinear partial 
differential equations. Similarly, new methods based on the theory of Hamiltonian 
systems allow the analysis of nonlinear stability of a wide range of physically relevant 
mathematical models. 

As we shall shortly see, the methodology based on these three developments has 
been remarkably successful in solving many nonlinear problems long considered in- 
tractable. Moreover, the common characteristics of nonlinear phenomena in very dis- 
tinct fields has allowed progress in one discipline to transfer rapidly to others and con- 
firms the inherently interdisciplinary nature of nonlinear science. Despite this progress, 
however, we do not have an entirely systematic approach to nonlinear problems. For 
the general nonlinear equation there is simply no analog of a Fourier transform. We 
do, however, have an increasing number of well-defined paradigms that both reflect 
typical qualitative features and permit quantitative analysis of a wide range of nonlinear 
systems. In the ensuing three sections I will focus on three such paradigms: coherent 
structures and solitons, deterministic chaos and fractals, and complex conjigurations 
and patterns. Of these the first two are well developed and amply exemplified, whereas 
the third is still emerging. Appropriately, these paradigms reflect different aspects of 
nonlinearity: coherent structures reveal a surprising orderliness, deterministic chaos il- 
lustrates an exquisite disorder, and complex configurations represent the titanic struggle 
between opposing aspects of order and chaos. 

If we were to follow the biblical sequence we would start with chaos, but because 
it is frankly a rather counterintuitive concept, we shall start with solitons or, more 
generally and accurately, coherent structures. 

Coherent Structures and Solitons 

From the Red Spot of Jupiter through clumps of electromagnetic radiation in tur- 
bulent plasmas to microscopic charge-density waves on the atomic scale, spatially local- 
ized, long-lived, wave-like excitations abound in nonlinear systems. These nonlinear 
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waves and structures reflect a surprising orderliness in the midst of complex behav- 
ior, Their ubiquitous role in both natural nonlinear phenomena and the corresponding 
mathematical models has caused coherent structures and solitons to emerge as one of 
the central paradigms of nonlinear science. Coherent structures typically represent the 
natural "modes" for understanding the time-evolution of the nonlinear system and often 
dominate the long-time behavior of the motion. 

To illustrate this, let me begin with one of the most familiar (and beautiful!) 
examples in nature, namely, the giant Red Spot (Fig. 3a). This feature, first observed 

from earth in the late seventeenth century, has remained remarkably stable in the 
turbulent cauldron of Jupiter's atmosphere. It represents a coherent structure on a 
scale of about 4 x lo8 meters, or roughly the distance from the earth to the moon. 

To give an example at the terrestrial level, certain classes of nonlinear ocean 
waves form coherent structures that propagate essentially unchanged for thousands of 
miles. Figure 3b is a photograph taken from an Apollo-Soyuz spacecraft of a region 
of open ocean in the Andaman Sea near northern Sumatra. One sees clearly a packet 
of five nearly straight surface waves; each is approximately 150 kilometers wide, so 
the scale of this phenomenon is roughly lo5 meters. Individual waves within the 

COHERENT STRUCTURES 
IN NATURE 

Fig. 3. (a) A closeup of the Red Spot of Jupiter, 
taken from the Voyager spacecraft. False color 
is used to enhance features of the image. In 
addition to the celebrated Red Spot, there are 
many other "coherent structures" on smaller 
scales on Jupiter. (Photo courtesy of NASA). 
(b) Nonlinear surface waves in the Andaman 
Sea off the coast of Thailand as photographed 
from an Apollo-Soyuz spacecraft. (Photo cour- 
tesy of NASA.) 
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COHERENT STRUCTURE 
IN CRYSTALS 

Fig. 4. (a) An image, made by using tunneling- 
electron microscopy, of a cleaved surface of 
tantalum diselenide that shows the expected 
graininess around atomic sites in the crys- 
tal lattice. (b) A similar image of tantalum 

disulfide, showing coherent structures called 

charge-density waves that are not simply a 
reflection of the crystal lattice but arise from 
nonlinear interaction effects. (Photos courtesy 

of C. G. Slough, W. W. McNairy, R. V. Coleman, 
B. Drake, and P. K. Hansma, University of Vir- 
ginia.) 

packet are separated from each other by about 10 kilometers. The waves, which are 
generated by tidal forces, move in the direction perpendicular to their crests at a speed 
of about 2 meters per second. Although the surface deflection of these waves is small- 
about 1.8 meters-they can here be seen from orbit because the sun is directly behind 
the spacecraft, causing the specular reflection to be very sensitive to variations of 
the surface. These visible surface waves are actually a manifestation of much larger 
amplitude-perhaps ten times larger-internal waves. The internal waves exist because 
thermal or salinity gradients lead to a stratification of the subsurface into layers. A priori 
such large internal waves could pose a threat to submarines and to off-shore structures. 
Indeed, the research on these waves was initiated by Exxon Corporation to assess the 
actual risks to the oil rigs they planned to construct in the area. Fortunately, in this 
context the phenomenon turned out to be more beautiful than threatening. 

Our final physical illustration is drawn from solid-state physics, where the phe- 
nomenon of charge-density waves exemplifies coherent structures on the atomic scale. If 
one studies a crystal of tantalum diselenide using an imaging process called tunneling- 
electron microscopy (Fig. 4a), one finds an image that is slightly denser around the 
atomic sites but otherwise is uniform. Given that the experimental technique focuses 
on specfic electronic levels, this graininess is precisely what one would expect at the 
atomic level; there are no nonlinear coherent structures, no charge-density waves. In 
contrast, tantalum disulfide, which has nearly identical lattice parameters, exhibits much 
larger structures in the corresponding image (Fig. 4b); in fact, the image shows a hexag- 
onal array of coherent structures. These charge-density waves are separated by about 
3.5 normal lattice spacings, so their occurence is not simply a reflection of the natural 
atomic graininess. Rather, these coherent structures arise because of a nonlinear cou- 
pling between the electrons and the atomic nuclei in the lattice. Notice that now the 
scale is l o 9  meter. 

Solitons. We have thus identified nonlinear coherent structures in nature on scales 
ranging from lo8 meters to l o 9  meter-seventeen orders of magnitude! Clearly this 
paradigm is an essential part of nonlinear science. It is therefore very gratifying that 
during the past twenty years we have seen a veritable revolution in the understanding of 
coherent structures. The crucial event that brought on this revolution was the discovery, 
by Norman Zabusky and Martin Kruskal in 1965, of the remarkable soliton. In a sense, 
solitons represent the purest form of the coherent-structure paradigm and thus are a 
natural place to begin our detailed analysis. Further, the history of this discovery shows 
the intricate interweaving of the various threads of Stan Ulam's legacy to nonlinear 
science. 

To define a soliton precisely, we consider the motion of a wave described by 
an equation that, in general, will be nonlinear. A traveling wave solution to such 
an equation is one that depends on the space x and time t variables only through the 
combination f = x -vt, where v is the constant velocity of the wave. The traveling wave 
moves through space without changing its shape and in particular without spreading 
out or dispersing. If the traveling wave is a localized single pulse, it is called a solitary 
wave. A soliton is a solitary wave with the crucial additional property that it preserves 
its form exactly when it interacts with other solitary waves. 

The study that led Kruskal and Zabusky to the soliton had its origin in the famous 
FPU problem, indeed in precisely the form shown in Eq. 6. Experimental mathematical 
studies of those equations showed, instead of the equipartition of energy expected on 
general grounds from statistical mechanics, a puzzling series of recurrences of the 
initial state (see "The Ergodic Hypothesis: A Complicated Problem of Mathematics 
and Physics"). Through a series of asymptotic approximations, Kruskal and Zabusky 
related the recurrence question for the system of oscillators in the FPU problem to the 
nonlinear partial differential equation 

(10) 
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Equation 10, called the Korteweg-devries or KdV equation, had first been derived 
in 1895 as an approximate description of water waves moving in a shallow, narrow 
channel. Indeed, the surface waves in the Andarnan Sea, which move essentially in 
one direction and therefore can be modeled by an equation having only one spatial 
variable, are described quite accurately by Eq. 10. That this same equation should also 
appear as a limiting case in the study of a discrete lattice of nonlinear oscillators is an 
illustration of the generic nature of nonlinear phenomena. 

To look analytically for a coherent structure in Eq. 10, one seeks a localized 
solution us(O that depends only on = x - vt, thereby reducing the partial differential 
equation to an ordinary differential equation in <. The result can be integrated explicitly 
and, for solutions that vanish at infinity, yields 

2 V^ us(x, t )  = 3v sech -(x - vt). 
2 

This solution describes a solitary wave moving with constant velocity v .  Moreover, 
the amplitude of the wave is proportional to v ,  and its width is inversely proportional 
to fi. The faster the wave goes, the narrower it gets. This relation between the shape 
and velocity of the wave reflects the nonlinearity of the KdV equation. 

Intuitively, we can understand the existence of this solitary wave as a result of 
a delicate balance in the KdV equation between the linear dispersive term $, which 
tends to cause an initially localized pulse to spread out and change shape as it moves, 
and the nonlinear convective derivative term u g, which tends to increase the pulse 
where it is already large and hence to bunch up the disturbance. (For a more precise 
technical analysis of these competing effects in another important nonlinear equation, 
see "Solitons in the Sine-Gordon Equation.") 

Although the solution represented by Eq. 11 is, by inspection, a coherent structure, 
is it a soliton? In other words, does it preserve its form when it collides with another 
solitary wave? Since the analytic methods of the 1960s could not answer this question, 
Zabusky and Kruskal followed another of Ulam's leads and adopted an experimental 
mathematics approach by performing computer simulations of the collision of two 
solitary waves with different velocities. Their expectation was that the nonlinear 
nature of the interaction would break up the waves, causing them to change their 
properties dramatically and perhaps to disappear entirely. When the computer gave 
the startling result that the coherent structures emerged from the interaction unaffected 
in shape, amplitude, and velocity, Zabusky and Kruskal coined the term "soliton," a 
name reflecting the particle-like attributes of this nonlinear wave and patterned after 
the names physicists traditionally give to atomic and subatomic particles. 

In the years since 1965 research has revealed the existence of solitons in a host 
of other nonlinear equations, primarily but not exclusively in one spatial dimension. 
Significantly, the insights gained from the early experimental mathematical studies 
have had profound impact on many areas of more conventional mathematics, including 
infinite-dimensional analysis, algebraic geometry, partial differential equations, and 
dynamical systems theory. To be more specific, the results of Kruskal and Zabusky 
led directly to the invention of a novel analytic method, now known as the "inverse 
spectral transform," that permits the explicit and systematic solution of soliton-bearing 
equations by a series of effectively linear operations. Further, viewed as nonlinear 
dynamical systems, the soliton equations have been shown to correspond to infinite- 
degree-of-freedom Hamiltonian systems that possess an infinite number of independent 
conservation laws and are thus completely integrable. Indeed, the invariance of solitons 
under interactions can be understood as a consequence of these conservation laws. 

Applied Solitons. From all perspectives nonlinear partial differential equations con- 
taining solitons are quite special. Nonetheless, as our examples suggest, there is a 
surprising mathematical diversity to these equations. This diversity is reflected in the 
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corresponding variety of real-world applications to problems in the natural sciences and 
engineering. In fiber optics, conducting polymers and other quasi-one-dimensional sys- 
tems, Josephson transmission lines, and plasma cavitons-as well as the surface waves 
in the ~ndaman  Sea!-the prevailing mathematical models are slight modifications of 
soliton equations. There now exist several numerical and analytic perturbation tech- 
niques for studying these "nearly" soliton equations, and one can use these to describe 
quite accurately the behavior of real physical systems. 

One specific, decidedly practical illustration of the application of solitons concerns 
effective long-distance communication by means of optical fibers. Low-intensity light 
pulses in optical fibers propagate linearly but dispersively (as described in "Solitons 
in the Sine-Gordon Equation"). This dispersion tends to degrade the signal, and, as a 
consequence, expensive "repeaters" must be added to the fiber at regular intervals to 
reconstruct the pulse. 

However, if the intensity of the light transmitted through the fiber is substantially 
increased, the propagation becomes nonlinear and solitary wave pulses are formed. 
In fact, these solitary waves are very well described by the solitons of the "nonlinear 
Schrodinger equation," another of the celebrated completely integrable nonlinear partial 
differential equations. In terms of the (complex) electric field amplitude E ( x ,  t ) ,  this 
equation can be written 
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so that (groups of) waves with different 
values of ko will have different group ve- 
locities. Now consider a general solu- 
tion to Eq. 2, which, by the principle of 
superposition, can be formed by adding 
together many plane waves (each with a 
different constant). Since the elementary 
components with different wave numbers 
will propagate at different group veloci- 
ties, the general solution will change its 
form, or disperse, as it moves. Hence, 
the general solution to Eq. 2 cannot be a 
soliton. 

Next consider adding a nonlinear term 
to Eq. 2. With considerable malice afore- 
thought, we change notation for the de- 
pendent variable and choose the nonlin- 
earity so that the full equation becomes 

a20 2a20 2 .  
- - c0 Ã‘ + m sin 6' = 0, (5) 
at2 ax 

the "sine-Gordon" equation. We can com- 
pare Eq. 5 to our previous Eq. 2 by noting 
that in the limit of small 0, Eq. 5 reduces 
to 

where the remaining terms are 0(05) and 
higher. 

Based on remarks made in the intro- 
ductory section of the main text, we see 
that Eq. 5 looks like a bunch of sim- 
ple, plane pendulums coupled together by 
the spatial derivative term Q20/Qx2. In 
fact, the sine-Gordon equation has many 
physical applications, including descrip- 

tions of chain-like magnetic compounds 
and transmission lines made out of arrays 
of Josephson junctions of superconduc- 
tors. Also, the equation is one of the 
celebrated completely integrable, infinite- 
degree-of-freedom Harniltonian systems, 
and the initial-value problem for the equa- 
tion can be solved exactly by the analytic 
technique of the "inverse spectral trans- 
form." Since the details of this method 
are well beyond the scope of a general 
overview, we shall only quote the solu- 
tions relevant to our discussion. First, just 
as for the KdV equation (Eq. 10 in the 
main text), one can find directly a single 
solitary-wave solution: 

with 7 = 1 / d 1 - v ^  C = m / c o ,  and 
r = mt. 

Since this solution approaches 0 as 
x - -oo and 27r as x -Ã +m, it de- 
scribes a glitch in the field 0 localized 
around C = VT, that is, around x = 
covt. As a consequence, it is known as 
a "kink." Importantly, it does represent a 
physically truly localized excitation, be- 
cause all the energy and momentum as- 
sociated with this wave are exponentially 
centered around the kink's location. Sim- 
ilarly, the so-called anti-kink solution 

&(x, t) = 4 tan-' e"7^-v7'", (8) 

interpolates between 27r as x -Ã -oo and 
0 a s x  -  ̂+oo. 

Are the kinks and anti-kinks solitons? 

Here we can avail ourselves of the mira- 
cle of integrability and simply write down 
an analytic solution that describes the 
scattering of a kink and an antikink. The 
result is 

s i n .  -KC- 

ffij,(x, t )  = 4tan-' 

(9) 
The dedicated reader can verify that as 
t -+ -oo, bi, looks like a widely sepa- 
rated kink and anti-kink approaching each 
other at velocity v. For t near 0 they 
interact nonlinearly, but as t + +a, 
the kink and anti-kink emerge with their 
forms intact. Readers with less dedication 
can simply refer to the figure, in which 
the entire collision process is presented 
in a space-time plot. Note that since the 
equation is invariant under 0 -+ 0+2n7r, a 
kink that interpolates between 27r and 47r 
is physically equivalent to one that inter- 
polates between 0 and 27r. 

In the interest of historical accuracy, 
we should add one final point. The an- 
alytic solution, Eq. 9, showing that the 
kink and anti-kink are in fact solitons, 
was actually known, albeit not widely, 
before the discovery of the KdV soliton. 
It had remained an isolated and arcane cu- 
riosity, independently rediscovered sev- 
eral times but without widespread impact. 
That such solutions could be constructed 
analytically in a wide range of theories 
was not appreciated. It took the ex- 
perimental mathematics of Zabusky and 
Kruskal to lead to the soliton revolution. I 

The soliton corresponding to the nonlinear pulse moving with velocity v through the 
optical fiber has the form 

In the idealized limit of no dissipative energy loss, these solitons propagate without 
degradation of shape; they are indeed the natural stable, localized modes for propagation 
in the fiber. An intrinsically nonlinear characteristic of this soliton, shown explicitly in 
Eq. 13, is the relation between its amplitude (hence its energy) and its width. In real 
fibers, where dissipative mechanisms cause solitons to lose energy, the individual soliton 
pulses therefore broaden (but do not disperse). Thus, to maintain the separation between 
solitons necessary for the integrity of the signal, one must add optical amplifiers, based 
on stimulated Raman amplification, to compensate for the loss. 

Theoretical numerical studies suggest that the amplification can be done very 
effectively. An all-optical system with amplifier spacings of 30 to 50 kilometers and 
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Raman pump power levels less than 100 milliwatts can use solitons of 20 picoseconds 
duration to send information at a bit rate of over 10 gigahertz. This is more than an 
order of magnitude greater than the rate anticipated for conventional (linear) systems. 
Although laboratory experiments have confirmed some of these results, full engineering 
studies have yet to be carried out. In addition, a critical and still unresolved issue is the 
relative cost of the repeaters supporting the linear system versus that of the amplifiers 
in the soliton-based approach. Nonetheless, the prospects for using optical solitons in 
long-distance communication are exciting and real. 

Coherent Structures. Thus far our discussion of the coherent-structure paradigm 
has focused almost exclusively on solitons. Although this emphasis correctly indicates 
both the tremendous interest and the substantial progress to which this aspect of the 
paradigm has led, it obscures the much broader role that nornoliton coherent structures 
play in nonlinear phenomena. Vortices in fluids, chemical-reaction waves and nonlinear 
diffusion fronts, shock waves, dislocations in metals, and bubbles and droplets can all 
usefully be viewed as instances of coherent structures. As in the case of the solitons, the 
existence of these structures results from a delicate balance of nonlinear and dispersive 
forces. 

In contrast to solitons, however, these more general coherent structures typically 
interact strongly and do not necessarily maintain their form or even their separate 
identities for all times. Fluid vortices may merge to form a single coherent structure 
equivalent to a single larger vortex. Interactions among shock waves lead to diffraction 
patterns of incident, reflected, and transmitted shocks. Droplets and bubbles can 
interact through merging or splitting. Despite these nontrivial interactions, the coherent 
structures can be the nonlinear modes in which the dynamics is naturally described, and 
they may dominate the long-time behavior of the system. To exemplify more concretely 
the essential role of these general coherent structures in nonlinear systems, let me focus 
on two broad classes of such structures: vortices and fronts. 

The importance of vortices in complicated fluid flows and turbulence has been 
appreciated since ancient times. The giant Red Spot (Fig. 3a) is a well-known example 
of a fluid vortex, as are tornados in the earth's atmosphere, large ocean circulation 
patterns called "modons" in the Gulf Stream current, and "rotons" in liquid helium. 
In terms of practical applications, the vortex pattern formed by a moving airfoil is 
immensely important. Not only does this pattern of vortices affect the fuel efficiency 
and performance of the aircraft, but it also governs the allowed spacing between planes 
at takeoff and landing. More generally, vortices are the coherent structures that make 
up the turbulent boundary layer on the surfaces of wings or other objects moving 
through fluids. Further, methods based on idealized point vortices provide an important 
approach to the numerical simulation of certain fluid flows. 

The existence of fronts as coherent structures provides yet another illustration of 
the essential role of nonlinearity in the physical world. Linear diffusion equations 
cannot support wave-like solutions. In the presence of nonlinearity, however, diffu- 
sion equations can have traveling wave solutions, with the propagating wave front 
representing a transition from one state of the system to another. Thus, for example, 
chemical reaction-diffusion systems can have traveling wave fronts separating reacted 
and unreacted species. Often, as in flame fronts or in internal combustion engines, 
these traveling chemical waves are coupled with fluid modes as well. Concentration 
fronts arise in the leaching of minerals from ore beds. Moving fronts between infected 
and non-infected individuals can be identified in the epidemiology of diseases such as 
rabies. In advanced oil recovery processes, (unstable) fronts between the injected water 
and the oil trapped in the reservoir control the effectiveness of the recovery process. 

Given their ubiquity and obvious importance in nonlinear phenomena, it is gratify- 
ing that recent years have witnessed remarkable progress in understanding and modeling 
these general coherent structures. Significantly, this progress has been achieved by pre- 
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cisely the synergy among computation, theory, and experiment that we have argued 
characterizes nonlinear science. Further, as a consequence of this progress, coherent 
structures and solitons have emerged as an essential paradigm of nonlinear science, 
providing a unifying concept and an associated methodology at the theoretical, com- 
putational, and experimental levels. The importance of this paradigm for technological 
applications, as well as its inherent interest for fundamental science, will guarantee its 
central role in all future research in this subject. 

Deterministic Chaos and Fractals 

Deterministic chaos is the term applied to the aperiodic, irregular, unpredictable, 
random behavior that in the past two decades has been observed in an incredible variety 
of nonlinear systems, both mathematical and natural. Although the processes are strictly 
deterministic and all forces are known, the long-time behavior defies prediction and is 
as random as a coin toss. 

That a system governed by deterministic laws can exhibit effectively random 
behavior runs directly counter to our normal intuition. Perhaps it is because intuition is 
inherently "linear;" indeed, deterministic chaos cannot occur in linear systems. More 
likely, it is because of our deeply ingrained view of a clockwork universe, a view 
that in the West was forcefully stated by the great French mathematician and natural 
philosopher Laplace. If one could know the positions and velocities of all the particles 
in the universe and the nature of all the forces among them, then one could chart the 
course of the universe for all time. In short, from exact knowledge of the initial state 
(and the forces) comes an exact knowledge of the final state. In Newtonian mechanics 
this belief is true, and to avoid any possible confusion, I stress that we are considering 
only dynamical systems obeying classical, Newtonian mechanics. Subsequent remarks 
have nothing to do with "uncertainties" caused by quantum mechanics. 

However, in the real world exact knowledge of the initial state is not achievable. 
No matter how accurately the velocity of a particular particle is measured, one can 
demand that it be measured more accurately. Although we may, in general, recognize 
our inability to have such exact knowledge, we typically assume that if the initial 
conditions of two separate experiments are almost the same, the final conditions will 
be almost the same. For most smoothly behaved, "normal" systems this assumption 
is correct. But for certain nonlinear systems it is false, and deterministic chaos is the 
result. 

At the turn of this century, Henri Poincark, another great French mathematician and 
natural philosopher, understood this possibility very precisely and wrote (as translated 
in Science and Method): 

"A very small cause which escapes our notice determines a considerable effect 
that we cannot fail to see, and then we say that that effect is due to chance. If we 
knew exactly the laws of nature and the situation of the universe at the initial mo- 
ment, we could predict exactly the situation of that same universe at a succeeding 
moment. But even if it were the case that the natural laws had no longer any secret 
for us, we could still only know the initial situation approximately. If that enabled 
us to predict the succeeding situation with the same approximation, that is all we re- 
quire, and we should say that the phenomenon had been predicted, that it is governed 
by laws. But it is not always so; it may happen that small differences in the initial 
conditions produce very great ones in the final phenomena. A small error in the for- 
mer will produce an enormous error in the later. Prediction becomes impossible, and 
we have the fortuitous phenomenon." 

Despite Poincari's remarkable insight, deterministic chaos remained virtually unex- 
plored and unknown until the early 1960s. As the ensuing discussion will reveal, 
the reason for this long hiatus is that chaos defies direct analytic treatment. The seeds 
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planted by Poincard could only germinate when the advances in interactive computation 
made experimental mathematics a reality. 

The Logistic Map. One remarkable instance of a successful experimental mathemat- 
ical study occurred in a nonlinear equation simple enough to explain to an elementary 
school child or to analyze on a pocket calculator yet subtle enough to capture the 
essence of a whole class of real world phenomena. It is arguably the simplest model 
of a system displaying deterministic chaos, and as such has been studied by a host of 
distinguished researchers, including Ulam, von Neumann, Kac, Metropolis, Stein, May, 
and Feigenbaum (see "Iteration of Maps, Strange Attractors, and Number theory-An 
Ulamian Potpourri"). As we shall see, this focus of talent has been fully justified, for 
the simple model provides remarkable insight into a wealth of nonlinear phenomena. 
Thus it is a natural place to begin our quantitative study of deterministic chaos. 

The model, known as the logistic map, is a discrete-time, dissipative, nonlinear 
dynarnical system. The value of a variable xn at time n is mapped to a new value xn+1 
at time n + 1 according to the nonlinear function 

where the control parameter r satisfies 0 < r < 4 and the allowed values-loosely 
speaking, the phase s p a c e ~ o f  the xn are 0 5 xn < 1. The map is iterated as many 
times as desired, and one is particularly interested in the behavior as time-that is, n ,  
the number of iterations-approaches infinity. Specifically, if an initial condition is 
picked at random in the interval (0, 1) and iterated many times, what is its motion after 
all transients have died out? 

The behavior of this nonlinear map depends critically on the control parameter and 
exhibits in certain regions sudden and dramatic changes in response to small variations 
in r .  These changes, technically called bifurcations, provide a concrete example of 
our earlier observation that small changes in the parameters of a nonlinear system can 
produce enormous qualitative differences in the motion. 

For 0 < r < I, the value of xn drops to 0 as n approaches infinity no matter what 
its inital value. In other words, after the transients disappear, all points in the interval 
(0 , l )  are attracted to the fixed point x *  at x = 0. This fixed point is analogous to 
the fixed point in Fig. 2 at (6 = 0, dO/dt = 0) with the very important distinction that 
the fixed point in the logistic map is an attractor: the dissipative nature of the map 
causes the "volume" in phase space to collapse to a single point. Such attractors are 
impossible in Hamiltonian systems, since their motion preserves phase-space volumes 
(see "Hamiltonian Chaos and Statistical Mechanics"). The mathematical statement of 
this behavior then is 

lim xn = x *  = 0. 
n-00 

We can easily calculate the (linearized) stability of this fixed point by considering 
how small deviations from it behave under the map. In Eq. 14 we set xn = x* + en and 
xn+l = x* + en+l and consider only terms linear in en and en+, . The resulting equation is 

so that for x* = 0, the en's will remain small for all iterations-provided r < 1. 
This last comment suggests that something interesting happens as r passes 1, and 

indeed for 1 < r < 3 we find an attracting fixed point with a value that depends on r .  
This value is readily calculated, since at a fixed point xn = xn+1 = x*. Substituting this 
relation into Eq. 14, we find 

1 
lim xn =x*( r )=  1 - - 

n-00 r 
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Hence as the value of r moves from 1 toward 3, the value of the fixed point x *  moves 
from 0 toward 213. Notice that the linear stability analysis given above shows that 
this r-dependent fixed point is stable for 1 < r < 3. Notice also that while x* = 0 is 
still a fixed point in this region, the linear stability analysis shows that it is unstable. 
Hence the point x = 0 is now analogous to the unstable fixed point in Fig. 2 at 6 = TT, 

d6/dt = 0; the slightest perturbation will drive the solution away from x = 0 to the 
stable fixed point at x*(r). 

A more interesting bifurcation occurs at r = 3. Suddenly, instead of approaching a 
single fixed point, the long-time solution oscillates between two values: thus the model 
has an attracting limit cycle of period 2! This limit cycle is the discrete analogue of the 
closed periodic oscillations shown in the phase plane of the pendulum (Fig. 2), again, 
of course, subject to the distinction that the logistic-map limit cycle is an attractor. 

Although one can still continue analytically at this stage, it is easier to refer to the 
results of an experimental mathematical simulation (Fig. 5) that depicts the attracting set 
in the logistic map as a function of r .  Here we see clearly the bifurcation to the period-2 
limit cycle at r = 3. But more striking, as r moves toward 3.5 and beyond, period-4 
and then period-8 limit cycles occur, followed by a region in which the attracting set 
becomes incredibly complicated. A careful anlysis of the logistic map shows that the 
period-8 cycle is followed by cycles with periods 16, 32, 64, and so forth. The process 
continues through all values 2" so that the period approaches infinity. Remarkably, all 
this activity occurs in the finite region of r below the value rc - 3.57. 

Above re the attracting set for many (but not all) values of r shows no periodicity 
whatsoever. In fact, the set consists of a sequence of points xn that never repeats 
itself. For these values of r ,  the simple logistic map exhibits deterministic chaos, and 
the attracting set-far more complex than the fixed points and limit cycles seen below 
rc-is called a strange attractor. Beyond the critical value rc, the logistic map exhibits 
a transition to chaos. 

Although this complicated, aperiodic behavior clearly motivates the name "chaos," 
does it also have the crucial feature of sensitive dependence on initial conditions that 
we argued was necessary for the long-time behavior to be as random as a coin toss? 
To study this question, one must observe how two initially nearby points separate as 
they are iterated by the map. Technically, this can be done by computing the Lyapunov 
exponent A. A value of A greater than 0 indicates that the nearby initial points separate 
exponentially (at a rate determined by A). If we plot the Lyapunov exponent as a 
function of the control parameter (Fig. 6), we see that the chaotic regions do have 
A > 0 and, moreover, the periodic windows in Fig. 5 that exist above re correspond to 
regions where A < 0. That such a filigree of interwoven regions of periodic and chaotic 
motion can be produced by a simple quadratically nonlinear map is indeed remarkable. 

In view of the complexity of the attracting sets above re, it is not at all surprising 
that this model, like the typical problem in chaotic dynamics, defied direct analytic 
approaches. There is, however, one elegant analytic result-made all the more relevant 
here by its having been discovered by Ulam and von Neumann-that further exemplifies 
the sensitive dependence that characterizes deterministic chaos. 

For the particular value r = 4, if we let xn = sin2 On, the logistic map can be 
rewritten 

sin2 = 4 sin2 On cos2 On = (2 sin On cos 6 ) '  = (sin 2 0 ~ ) ~  . 

Hence the map is simply the square of the doubling formula for the sine function, and 
we see that the solution is On+\ = 2Qn. In terms of the initial value, On, this gives 

This solution makes clear, first, that there is a very sensitive dependence to initial 
conditions and, second, that there is a very rapid exponential separation from adjacent 
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initial conditions. For example, by writing Q,, as a binary number with a finite number 
of digits-as one would in any digital computer-we see that the map amounts to a 
simple shift operation. When this process is carried out on a real computer, round-off 
errors replace the right-most bit with garbage after each operation, and each time the 
map is iterated one bit of information is lost. If the initial condition is known to 48 bits 
of precision, then after only 48 iterations of the map no information about the initial 
condition remains. Said another way, despite the completely deterministic nature of 
the logistic map, the exponential separation of nearby initial conditions means that all 
long-time information about the motion is encoded in the initial state, whereas none 
(except for very short times) is encoded in the dynamics. 

There is still much more that we can learn from this simple example. One question 
of obvious interest in nonlinear systems is the mechanism by which such systems move 
from regular to chaotic motion. In the logistic map, we have seen that this occurs 
via a period-doubling cascade of bifurcations: that is, by a succession of limit cycles 
with periods increasing as 2". In a classic contribution to nonlinear science, Mitchell 
Feigenbaum analyzed the manner in which this cascade occurred. Among his first 
results was the observation that the values of the parameter r at which the bifurcations 
occurred converged geometrically: namely, with 6,, defined by 

he found 
lim EE 6 = 4.669.. . . 

n - m  

More important, Feigenbaum was able to show that 6 did not depend on the details 
of the logistic m a p t h e  function need only have a "generic" maximum, that is, one 
with a nonvanishing second derivative-and hence 6 should be universal for all generic 
maps. Even more, he was able to argue convincingly that whenever a period-doubling 
cascade of bifurcations is seen in a dissipative dynarnical system, the universal number 
6, as well as several other universal quantities, should be observed independent of the 
system's phase-space dimension. 

This prediction received dramatic confirmation in an experiment carried out by 
Albert Libchaber and J. Maurer involving convection in liquid helium at low tempera- 
tures. Their observation of the period-doubling cascade and the subsequent extraction 
of 6 and other universal parameters provided striking proof of universal behavior in 
nonlinear systems. More recently, similar confirmation has been found in experiments 
on nonlinear electrical circuits and semiconductor devices and in numerical simulations 
of the damped, driven pendulum. Further, it is now known rigorously for dissipative 
systems that the universal behavior of the period-doubling transition to chaos in the 
logistic map can occur even when the phase-space dimension becomes infinite. 

It is important to emphasize that the period-doubling cascade is by no means 
the only way in which dissipative nonlinear systems move from regular motion to 
chaos (see, for example, the discussion of the indented trapezoid map on pp. 103- 
104). Many other routes-such as quasiperiodic and intermittent-have been identified 
and universality theories have been developed for some of them. But the conceptual 
progenitor of all these developments remains the simple logistic map. 

Finally, Fig. 5b illustrates one additional obvious feature of the attracting set of 
Eq. 14: namely, that it contains nontrivial-and, in fact, self-similar-structure under 
magnification. Indeed, in the mathematical model this self-similar structure occurs on 
all smaller scales; consequently, Fig. 5b is one example of a class of complex, infinitely 
ramified geometrical objects called fractals. We shall return to this point later. 

The Damped, Driven Pendulum. Armed with the quantitative insight gained from 
the logistic map, we can confront deterministic chaos in more conventional dynarnical 
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systems. We start with a very familiar example indeed: namely, the plane pendulum 
subjected to driving and damping. We can now make precise our earlier assertion that 
this simple system can behave in a seemingly random, unpredictable, chaotic manner 
(see "The Simple but Nonlinear Pendulum"). 

The motion of the damped, driven pendulum is described by Eq. 4 above. Apart 
from its application to the pendulum, Eq. 4 describes an electronic device called a 
Josephson tunneling junction in which two superconducting materials are separated 

THE LYAPUNOV EXPONENT 

Fig. 6. A positive value for the Lyapunov expo- 
nent (A > 0) indicates that nearby initial points 
separate exponentially, whereas negative val- 
ues (A < 0) indicate periodic or quasiperiodic 
motion. Here the Lyapunov exponent is plot- 
ted as a function of the control parameter r 
for the logistic map (Fig. 5), and it can be seen 
that the periodic windows of Fig. 5 correspond 
to regions where A < 0. (Figure courtesy 
of Gottfried Mayer-Kress and Hermann Haken, 
Universitat Stuttgart, FRG.) 

by a thin nonconducting oxide layer. Among the present practical applications of 
such junctions are high-precision magnetometers and voltage standards. The ability 
of these Josephson junctions to switch rapidly (tens of picoseconds) and with very 
low dissipation (less than microwatts) from one current-carrying state to another may 
provide microcircuit technologies for, say, supercomputers that are more efficient than 
those based on conventional semiconductors. Hence the nature of the dynamic response 
of a Josephson junction to the external driving force-the F cos Or term in Eq. &is a 
matter of technological, as well as fundamental, interest. 

Since analytic techniques are of limited use in the chaotic regime, we demonstrate 
the existence of chaos in Eq. 4 by relying on graphical results from numerical simu- 
lations. Figure 7 illustrates how the phase plane (Fig. 2) of the pendulum is modified 
when driving and damping forces are included and, in particular, shows how the simple 
structure involving fixed points and limit cycles is dramatically altered. 

THE LOGISTIC MAP 

Fig. 5. (a) The attracting set for the logistic 
map (Eq. 14 in the main text) generated by plot- 
ting 300 values of the iterated function (after 
the transients have died out) for each of 1150 
values of the control parameter r. The map has 
a cycle of period 2 when the control parame- 
ter r is at 3.4 (left edge). This cycle quickly 
"bifurcates" to cycles of periods 4, 8, 16, and 
so forth as r increases, generating a period- 
doubling cascade. Above rc Ã 3.57 the map 
exhibits deterministic chaos interspersed with 
gaps where periodic motion has returned. For 
example, cycles of periods 6, 5, and 3 can be 
seen in the three larger gaps to the right. (b) A 
magnified region (shown as a small rectangle 
in (a)) illustrates the self-similar structure that 
occurs at smaller scales. (Figure courtesy of 
Roger Eckhardt, Los Alamos National Labora- 

tory.) 
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THE DAMPED, DRIVEN PENDULUM: 
A STRANGE ATTRACTOR 

Fig. 7. The motion of a damped, periodically 

driven pendulum (Eq. 4 in the main text) for 

certain parameter values is chaotic with the 

attracting set being a "strange attractor." An 

impression of such motion can be obtained 

by plotting the position 0 and velocity 8 of 

the pendulum once every cycle of the driving 

force (as shown here for a = 0.3, r = 4.5, and 

n = 0.6 in units with g /1  = 4). The fact that the 

image is repeated at higher and lower values 

of 8 is a result of the pendulum swinging over 
the top of its pivot point. (Figure courtesy 

of James Crutchfield, University of California, 

Berkeley.) 

We note first that since there is an external time dependence in Eq. 4, the system 
really involves three first-order differential equations. In a normal dynamical system 
each degree of freedom results in two first-order equations, so this system is said to 
correspond to one-and-a-half degrees of freedom. To see this explicitly, we introduce 
a variable z = a t ,  recall that the angular momentum pg = m12dQ/dt, and rewrite Eq. 4, 
resulting in 

* = -ape - mgl sin 0 + m12r cos z , 
dt 

which shows how the system depends on the three generalized coordinates: 6, pg, and 
z .  Note further that the presence of damping implies that the system is no longer 
Harniltonian but rather is dissipative and hence can have attractors. 

Analysis of the damped, driven pendulum neatly illustrates two separate but related 
aspects' of chaos: first, the existence of a strange attractor, and second, the presence of 
several different attracting sets and the resulting extreme sensitivity of the asymptotic 
motion to the precise initial conditions. 

Figure 7 shows one of the attractors of Eq. 22 for the parameter values a = 0.3, 
r = 4.5, and Cl = 0.6 (in units with g / I  = 4). As in the case of the logistic map, only 
the attracting set is displayed; the transients are not indicated. To obtain Fig. 7, which 
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is a plot showing only the phase-plane variables 6 and 6, one takes a "stroboscopic 
snapshot" of the motion once during every cycle of the driving force. The complicated 
attracting set shown in the figure is in fact a strange attractor and describes a never- 
repeating, nonperiodic motion in which the pendulum oscillates and flips over its pivot 
point (hence the repeated images at 2~-multiples of the angle) in an irregular, chaotic 
manner. The sensitive dependence on initial conditions implies that nearby points 
on the attractor will separate exponentially in time, following totally different paths 
asymptotically. Enlargements of small regions of Fig. 7 show a continuation of the 
intricate structure on all scales; like the attracting set of the logistic map, this strange 
attractor is a fractal. 

To visualize the motion on this attractor, it may be helpful to recall the behavior 
of an amusing magnetic parlor toy that has recently been quite popular. This device, 
for which the mathematical model is closely related to the damped, driven pendulum 
equation, spins first one way and then the other. At first it may seem that one can guess 
its behavior. But just when one expects it to spin three times to the right and then go 
to the left, it instead goes four, five, or perhaps six times to the right. The sequence of 
right and left rotations is unpredictable because the system is undergoing the aperiodic 
motion characteristic of a strange attractor. 

Figure 8 illustrates the important point that the strange attractor of Fig. 7 is not the 
only attractor that exists for Eq. 22. Specifically, for a. = 0.1, T = 714, and 0 = 1 (now 
in units of g / l  = I), the system is attracted to periodic limit cycles of clockwise or 
counterclockwise motion. Figure 8 demonstates this with another variant of our familiar 
phase-plane plot in which a color code is used to indicate the long-time behavior of all 
points in the plane. More precisely, this plot is a map of every initial state (6, 0)  onto 
a "final state" corresponding to one of the attractors. A blue dot is plotted at a point in 
the plane if the solution that starts from that point at t = 0 is attracted asymptotically 
to the limit cycle corresponding to clockwise rotation of the pendulum. Similarly, a 
red dot is plotted for initial points for which the solution asymptotically approaches 
counterclockwise rotation. 

In Fig. 8 we observe large regions in which all the points are colored red and, hence, 
whose initial conditions lead to counterclockwise rotations. Similarly, there are large 
blue regions leading to clockwise rotations. In between, however, are regions in which 
the tiniest change in initial conditions leads to alternations in the limit cycle eventually 
reached. In fact, if you were to magnify these regions even more, you would see further 
alternations of blue and red-even at the finest possible level. In other words, in these 
regions the final state of the pendulum~clockwise or counterclockwise motion-is an 
incredibly sensitive function of the exact initial point. 

There is an important subtlety here that requires comment. For the red and blue 
regions the asymptotic state of the pendulum does not correspond to chaotic motion, 
and the two attracting sets are not strange attractors but are rather just the clockwise and 
counterclockwise rotations that exist as allowed motions even for the free pendulum 
(Fig. 2). The aspect of chaos that is reflected by the interwoven red and blue regions is 
the exquisite sensitivity of the final state to minute changes in the initial state. Thus, in 
regions speckled with intermingled red and blue dots, it is simply impossible to predict 
the final state because of an incomplete knowledge of initial conditions. 

In addition to the dominant red and blue points and regions, Fig. 8 shows much 
smaller regions colored greenish white and black. These regions correspond to still 
other attracting limit sets, the greenish-white regions indicating oscillatory limit cycles 
(no rotation) and the black regions indicating points that eventually go to a strange 
attractor. 

From the example of Fig. 8 we learn the important lesson that a nonlinear dis- 
sipative system may contain many different attractors, each with its own basin of at- 
traction, or range of initial conditions asymptotically attracted to it. A subtle further 
consequence of deterministic chaos is that the boundaries between these basins can 
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themselves be extraordinarily complex and, in fact, fractal. A fractal basin boundary 
means that qualitatively different long-time behaviors can result from nearly identical 
initial configurations. 

The Lorenz Attractor. In both cases of the logistic map and the damped, driven 
pendulum, we have indicated that strange attractors are intimately connected with the 
presence of dissipative deterministic chaos. These exotic attracting sets reflect motions 

THE DAMPED, DRIVEN PENDULUM: 
PERIODIC LIMIT-CYCLE 
ATTRACTORS 

Fig. 8. In this variation of the phase plot for 
the damped, driven pendulum, a blue dot is 
plotted at a point in  the plane if the solution 
that starts from that point at t = 0 is attracted 
to clockwise rotation, whereas a red dot rep- 
resents an attraction to counterclockwise ro- 
tation, and a greenish-white dot represents an 
attraction to  any oscillatory limit cycle without 
rotation. Only a portion of the phase plane is 
shown. The conditions used to show these 
limit-cycle attractors are a = 0.1, I? = 7/4, 
and n = 1 (in units of g/1 = 1). Despite the 
nonchaotic motion of the limit cycles, sensi- 
tive dependence on initial conditions is still 
quite evident from the presence of extensive 
regions of intermingled red and blue. Further, 

the black regions indicate initial conditions for 
which the limiting orbit is a strange attractor. 
(Figure courtesy of Celso Grebogi, Edward Ott, 
James Yorke, and Frank Varosi, University of 
Maryland.) 

of the system that, even though they may occur in a bounded region of phase space, are 
not periodic (thus never repeating), and motions originating from nearby initial points 
on the attractor separate exponentially in time. Further, viewed as geometric objects 
these attractors have an infinitely foliated form and exhibit intricate structure on all 
scales. 

To develop a clearer understanding of these admittedly bizarre objects and the 
dynarnical motions they depict, we turn to another simple nonlinear dynamical model. 
Known as the Lorenz equations, this model was developed in the early 1960s by 
Edward Lorenz, a meteorologist who was convinced that the unpredictability of weather 
forecasting was not due to any external noise or randomness but was in fact compatible 
with a completely deterministic description. In this sense, Lorenz was attempting to 
make precise the qualitative insight of Poincark, who, in another prescient comment- 
all the more remarkable for its occurring in the paragraph immediately following our 
earlier quotation from Science and Method-observed: 

"Why have meteorologists such difficulty in predicting the weather with any 
certainty?. . .We see that great disturbances are generally produced in regions where 
the atmosphere is in unstable equilibrium. The meteorologists see very well that the 
equilibrium is unstable, that a cyclone will be fanned somewhere, but exactly where 
they are not in a position to say; a tenth of a degree more or less at any given point, 
and the cyclone will burst here and not there, and extend its ravages over districts it 
would otherwise have spared. . . .Here, again, we find the same contrast between a 
very trifling cause that is inappreciable to the observer, and considerable effects, that 
are sometimes terrible disasters." 
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To demonstrate this sensitive dependence, Lorenz began with a simplified model 
approximating fluid convection in the atmosphere. By expanding this model in (spatial) 
Fourier modes and by truncating the expansion to the three lowest modes and explicitly 
ignoring couplings to higher modes, Lorenz obtained a closed system of three nonlinear 
ordinary first-order differential equations: 

y = -xz +rx - v. and 

z =xy  - bz. 

In the application to atmospheric convection, x measures the rate of convective over- 
turning, y and z measure the horizontal and vertical temperature variations, respectively, 
i7 is the Prandtl number, r is the Rayleigh number, and b (# 1) reflects the fact that the 
horizontal and vertical temperature structures do not generally damp at the same rate. 

As in the case of the damped, driven pendulum, the model describes a system with 
one-and-a-half degrees of freedom because it consists of three first-order equations. One 
set of parameters (17 = 10, r = 28, and b = 8/3) yields the celebrated Lorenz attractor, 
for which perspective views (Fig. 9) of the attracting set in the ( x , y ,  z )  space reveal 
two "lobes" (Fig. 9a) and a thickness in the third direction (Fig. 9b) that shows the set 
is not planar. 

Just as any initial point on a periodic orbit will eventually trace out the full 
orbit, so here any initial point on this strange attractor will follow a path in time 
that eventually traces out the full structure. Here, however, nearby initial points will 
diverge exponentially, reflecting the sensitive dependence on initial conditions. The 
two-lobed structure of the Lorenz attractor suggests a particularly useful analogy to 
emphasize this sensitivity. Choose two very nearby initial points and follow their 
evolution in time. Call each loop around the right lobe "heads" and around the left 
lobe "tails." Then the asymptotic sequences of heads and tails corresponding to the two 
points will be completely different and totally uncorrelated to each other. Of course, 
the nearer the initial points, the longer their motions will remain similar. But for any 
initial separation, there will be a finite time beyond which the motions appear totally 
different. 

In his original study Lorenz observed this sensitive dependence in an unexpected 
manner, but one quite consistent with research in experimental mathematics. His own 
words (from p. 55 of his article in Global Analysis) provide a dramatic statement of 
the observation: 

"During our computations we decided to examine one of the solutions in greater 
detail, and we chose some intermediate conditions which had been typed out by the 
computer and typed them in as new initial conditions. Upon returning to the com- 
puter an hour later, after it had simulated about two months of "weather," we found 
that it completely disagreed with the earlier solution. At first we expected machine 
trouble, which was not unusual, but we soon realized that the two solutions did not 
originate from identical conditions. The computations had been carried internally to 
about six decimal places, but the typed output contained only three, so that the new 
initial conditions consisted of old conditions plus small perturbations. These pertur- 
bations were amplifying quasi-exponentially, doubling in about four simulated days, 
so that after two months the solutions were going their separate ways." 

Notice that the doubling period of the small initial perturbation corresponds directly to 
the binary bit shift of the logistic map at r = 4. Again we see the exponential loss of 
information about the initial state leading to totally different long-time behavior. 

Let me now focus on the geometric figure that represents the strange attractor 
of the Lorenz equations. Figure 9 is, in fact, generated by plotting the coordinates 
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LORENZ ATTRACTOR 

Fig. 9. The attracting set of the Lorenz attrac- 

tor (Eq. 23 in the text with u = 10, r = 28, and 
b = 8/3) formed by joining 10,000 time steps 

of a single orbit into a smooth curve with the 
first 5000 points plotted in blue and the sec- 

ond 5000 plotted in green. (a)-(c) These per- 
spective views reveal the two-lobed, nonplanar 

shape and the thickness of the attractor. The 
red lines indicate the direction of the coordi- 
nate axes. (d) A closeup of the interleaving 
of the Lorenz orbit, which, even for an infinite 
time series of points, would never intersect 
and repeat itself. The attractor has a fractal 
dimension of 2.04, that is, between that of an 
area and a volume. (Figure courtesy of Gott- 

fried Mayer-Kress, Los Alarnos National Labo- 

ratory.) 

x(t), y(t), and z(t) at 10,000 time steps (after transients have died out) and joining 
the successive points with a smooth curve. The first 5000 points are colored blue, the 
second 5000 green. The apparent white parts of the figure are actually blue and green 
lines so closely adjacent that the photographic device cannot distinguish them. 

Notice how the blue and green lines interleave throughout the attractor and, in 
Fig. 9d, how this interleaving continues to occur on a finer scale. In fact, if the full 
attractor, generated by the infinite time series of points (x(t), (t), z (t)) , were plotted, 

we would see the trajectory looping around forever, never intersecting itself and hence 
never repeating. The exquisite filamentary structure would exist on all scales, and, even 
in the infinite time limit, the attractor would not form a solid volume in the ( x ,  y,  z )  

space. In a sense that we shall make precise shortly, the attractor is a fractal object with 
dimension between that of an area (dimension = 2) and that of a volume (dimension = 
3). Indeed, the Lorenz attractor has afiactal dimension of about 2.04. 

Fractals. The term fractal was coined by Benoit Mandelbrot in 1975 to describe 
irregular, fragmented shapes with intricate structure on all scales. Fractals moved 
into the mainstream of scientific research when it became clear that these seemingly 
exotic geometric objects, which had previously been viewed as "a gallery of monsters," 
were emerging commonly in many natural contexts and, in particular, as the attracting 
sets of chaotic dynamical systems. In fact, Mandelbrot traced many of the core 
concepts related to fractals back to a number of distinguished late 19th and early 20th 
century mathematicians, including Cantor, Hausdorff, and Julia. But, as in the case 
of deterministic chaos, the flowering of these concepts came only after experimental 
mathematics made precise visualization of the monsters possible. 
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The essential feature of fractals is the existence of similar, nontrivial structure on 
all scales, so that small details are reminiscent of the entire object. Technically, this 
property is known as scaling and leads to a theoretical approach that allows construction 
of fine details of the object from crude general features. The structure need not be 
exactly self-similar on all scales. Indeed, much current research focuses on self-offine 
fractals, in which the structures on different scales are related by linear transformations. 

One consequence of this scale invariance is that fractal objects in general have 

CANTOR SET 

fractional rather than integral dimension: that is, rather than being lines, areas, or 
volumes, fractals lie "somewhere in between." To understand this quantitatively, we 
recall the example of the recursively defined Cantor set (Fig, 10). At the zeroth level, 
the set consists of a continuous line segment from 0 to 1. At the first level, the middle 
third of the segment is eliminated. At the second level, the middle third of each of 
the two remaining continuous segments are eliminated. At the third level, the middle 
third of each of these four segments is eliminated, and so forth ad infiniturn. At each 
level the Cantor set becomes progressively less dense and more tenuous, so that the end 
product is indeed something between a point and a line. It is easy to see in Fig. 10 that 
at the nth level, the Cantor set consists of 2" segments, each of length (113)". Thus, 
the "length" 1 of the set as n goes to infinity would be 

In the 1920s the mathematician Hausdorff developed a theory that can be used to 
study the fractional dimension of fractals such as the Cantor set. In the present simple 
case, this theory can be paraphrased by asking how many small intervals, N(e), are 
required to "cover" the set at a length scale e. As e Ã‘ 0, the fractal dimension df is 
defined by 

Inverting Eq. 25, we see that 

Fig. 10. The Cantor set is formed by starting 
with a line segment of unit length, removing its 
middle third, and, at each successive level, re- 
moving the middle third of the remaining seg- 
ments. Although, the length of the remaining 
segments goes to zero as the number of iter- 
ations, or levels, goes to infinity, the set has 
a fractal dimension greater than zero, namely 
In 2/ In 3 w 0.6309. (Figure courtesy of Roger 
Eckhardt, Los Alamos National Laboratory.) 
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HAMILTONIAN 
CHAOS and 
STATISTICAL 
MECHANICS 
The specific examples of chaotic sys- 

tems discussed in the main text-the 10- 
gistic map, the damped, driven pendu- 
lum, and the Lorenz equations-are all 
dissipative. It is important to recognize 
that nondissipative Hamiltonian systems 
can also exhibit chaos; indeed, Poincar6 
made his prescient statement concerning 
sensitive dependence on initial conditions 
in the context of the few-body Hamil- 
tonian problems he was studying. Here 
we examine briefly the many subtleties 
of Hamiltonian chaos and, as an illustra- 
tion of its importance, discuss how it is 
closely tied to long-standing problems in 
the foundations of statistical mechanics. 

We choose to introduce Hamiltonian 
chaos in one of its simplest incarnations, 
a two-dimensional discrete model called 
the standard map. Since this map pre- 
serves phase-space volume (actually area 
because there are only two dimensions) 
it indeed corresponds to a discrete ver- 
sion of a Hamiltonian system. Like the 
discrete logistic map for dissipative sys- 
tems, this map represents an archetype for 
Hamiltonian chaos. 

The equations defining the standard 
map are 

where, as the notation suggests, pn is the 
discrete analogue of the momentum, qn 
is the analogue of the coordinate, and 
the discrete index n plays the role of 
time. Only the fractional parts of p,, and 
qn are kept; hence the motion is on a 
torus, periodic in both p and q .  For any 
value of k ,  the map preserves the area 
in the (p,q) plane, since the Jacobian 
a(Pn+l, qn+~)/a(Pn, qn) = 1. 

The preservation of phase-space vol- 
ume for Hamiltonian systems has the very 
important consequence that there can be 
no attractors, that is, no subregions of 
lower phase-space dimension to which 
the motion is confined asymptotically. 
Any initial point (po, qo) will lie on some 
particular orbit, and the image of all 
possible initial points-that is, the unit 
square itself-is again the unit square. In 
contrast, dissipative systems have phase- 
space volumes that shrink. For example, 
the logistic map (Fig. 5 in the main text) 
at A = 3.1 has all initial points in the in- 
terval (0 , l )  attracted to just two points. 

Clearly, for k = 0 the standard map 
is trivially integrable, with pn = po be- 
ing constant and qn increasing linearly in 
time (n) as it should for free motion. The 
orbits are thus just straight lines wrap- 
ping around the toms in the q direction. 
For k = 1.1 the map produces the orbits 

shown in Figs. la-d. The most immedi- 
ately striking feature of this set of figures 
is the existence of nontrivial structure on 
all scales. Thus, like dissipative systems, 
Hamiltonian chaos generates strange frac- 
tal sets (albeit "fat" fractals, as discussed 
below). On all scales one observes "is- 
lands," analogues in this discrete case of 
the periodic orbits in the phase plane of 
the simple pendulum (Fig. 2 in the main 
text). In addition, however, and again on 
all scales, there are swarms of dots com- 
ing from individual chaotic orbits that un- 
dergo nonperiodic motion and eventually 
fill a finite region in phase space. In these 
chaotic regions the motion is "sensitively 
dependent on initial conditions." 

Figure 2 shows, in the full phase space, 
a plot of a single chaotic orbit followed 
through 100 million iterations (again, for 
k = 1 .I). This object differs from the 
strange sets seen in dissipative systems in 
that it occupies a finite fraction of the full 
phase space: specifically, the orbit shown 
takes up 56 per cent of the unit area that 
represents the full phase space of the map. 
Hence the "dimension" of the orbit is the 
same as that of the full phase space, and 
calculating the fractal dimension by the 
standard method gives df = 2. How- 
ever, the orbit differs from a conventional 
area in that it contains holes on all scales. 
As a consequence, the measured value of 
the area occupied by the orbit depends 
on the resolution with which this area is 
measured-for example, the size of the 
boxes in the box-counting method-and 
the approach to the finite value at in- 
finitely fine resolution has definite scaling 
properties. This set is thus appropriately 
called a "fat fractal." For our later dis- 
cussion it is important to note that the 
holes-representing periodic, nonchaotic 
motion-also occupy a finite fraction of 
the phase space. 

To develop a more intuitive feel for fat 
fractals, note that a very simple exam- 
ple can be constructed by using a slight 
modification of the Cantor-set technique 
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region magnified in (b). and so forth. Nontrivial 
structure, includina "Islands" and swarms of - 
dots that represent regions of chaotic, nonpe- 
riodic motion, are obvious on all scales. (Fig- 
lire courtesy of James Kadtke and David Urn- 
barger, Los Alamos National Laboratory.) 
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described in the main text. Instead of 
deleting the middle one-third of each in- 
terval at every scale, one deletes the mid- 
dle (113)" at level n. Although the re- 
sulting set is topologically the same as 
the original Cantor set, a calculation of 
its dimension yields df = 1; it has the 
same dimension as the full unit interval. 
Further, this fat Cantor set occupies a fi- 
nite fraction-amusingly but accidentally 
also about 56 per c e n t ~ o f  the unit inter- 
val, with the remainder occupied by the 
"holes" in the set. 

To what extent does chaos exist in the 
more conventional Hamiltonian systems 
described by differential equations? A 
full answer to this question would require 
a highly technical summary of more than 
eight decades of investigations by math- 
ematical physicists. Thus we will have 
to be content with a superficial overview 
that captures, at best, the flavor of these 
investigations. 

To begin, we note that completely in- 
tegrable systems can never exhibit chaos, 
independent of the number of degrees of 
freedom N. In these systems all bounded 
motions are quasiperiodic and occur on 
hypertori, with the N frequencies (pos- 
sibly all distinct) determined by the val- 
ues of the conservation laws. Thus there 
cannot be any aperiodic motion. Fur- 
ther, since all Hamiltonian systems with 
N = 1 are completely integrable, chaos 
cannot occur for one-degree-of-freedom 
problems. 

For N = 2, non-integrable systems can 
exhibit chaos; however, it is not trivial 
to determine in which systems chaos can 
occur; that is7 it is in general not obvi- 
ous whether a given system is integrable 
or not. Consider, for example, two very 
similar N = 2 nonlinear Hamiltonian sys- 
tems with equation of motion given by: 

d2x 
dt2 
= - x - 2 x y ,  

d2y 
(2) 

2 2 
= -Y + Y  -x  , 

anu 
d2x - -  
dt2 

- -x - 2xy, 

d^y =-y - y  2 - x  2 

dt2 

Equation 2 describes the famous Henon- 
Heiles system, which is non-integrable 
and has become a classic example of a 
simple (astro-) physically relevant Hamil- 
tonian system exhibiting chaos. On the 
other hand, Eq. 3 can be separated into 
two independent N = 1 systems (by a 
change of variables to C = x - y and 
Q = x + y) and hence is completely in- 
tegrable. 

Although there exist explicit calcula- 
tional methods for testing for integrabil- 
ity, these are highly technical and gener- 
ally difficult to apply for large N.  For- 
tunately, two theorems provide general 
guidance. First, Siegel's Theorem con- 
siders the space of Hamiltonians analytic 
in their variables: non-integrable Hamil- 
tonians are dense in this space, whereas 
integrable Hamiltonians are not. Sec- 
ond, Nekhoroshev's Theorem leads to the 
fact that all non-integrable systems have a 
phase space that contains chaotic regions. 

Our observations concerning the stan- 
dard map immediately suggest an essen- 
tial question: What is the extent of the 
chaotic regions and can they, under some 
circumstances, cover the whole phase 
space? The best way to answer this ques- 
tion is to search for nonchaotic regions. 
Consider, for example, a completely inte- 
grable N -degree-of-freedom Hamiltonian 
system disturbed by a generic non-inte- 
grable perturbation. The famous KAM 
(for Kolmogorov, Arnold, and Moser) 
theorem shows that, for this case, there 
are regions of finite measure in phase 
space that retain the smoothness associ- 
ated with motion on the hypertori of the 
integrable system. These regions are the 
analogues of the "holes" in the standard 
map. Hence, for a typical Hamiltonian 
system with N degrees of freedom, the 

chaotic regions do not fill all of phase 
space: a finite fraction is occupied by "in- 
variant KAM tori." 

At a conceptual level, then, the KAM 
theorem explains the nonchaotic behav- 
ior and recurrences that so puzzled Fermi, 
Pasta, and Ulam (see "The Fermi, Pasta, 
and Ulam Problem: Excerpts from 'Stud- 
ies of Nonlinear Problems' "). Although 
the FPU chain had many (64) nonlinearly 
coupled degrees of freedom, it was close 
enough (for the parameter ranges studied) 
to an integrable system that the invariant 
KAM tori and resulting pseudo-integrable 
properties dominated the behavior over 
the times of measurement. 

There is yet another level of subtlety 
to chaos in Hamiltonian systems: namely, 
the structure of the phase space. For non- 
integrable systems, within every regular 
KAM region there are chaotic regions. 
Within these chaotic regions there are, in 
turn, regular regions, and so forth. For 
all non-integrable systems with N > 3, 
an orbit can move (albeit on very long 
time scales) among the various chaotic 
regions via a process known as "Arnold 
diffusion." Thus, in general, phase space 
is permeated by an Arnold web that links 
together the chaotic regions on all scales. 

Intuitively, these observations concem- 
ing Hamiltonian chaos hint strongly at a 
connection to statistical mechanics. As 
Pig. 1 illustrates, the chaotic orbits in 
Hamiltonian systems form very compli- 
cated "Cantor dusts," which are nonperi- 
odic, never-repeating motions that wan- 
der through volumes of the phase space, 
apparently constrained only by conser- 
vation of total energy. In addition, in 
these regions the sensitive dependence 
implies a rapid loss of information about 
the initial conditions and hence an effec- 
tive irreversibility of the motion. Clearly, 
such wandering motion and effective ir- 
reversibility suggest a possible approach 
to the following fundamental question of 
statistical mechanics: How can one de- 
rive the irreversible, ergodic, thermal- 
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have that the er- 

A Complicated Problem of 
and Physics,") 

variety of physicdl 

Â How does the measure of phase space 
occupied by KAM tori depend on Nt 
Is there a class of models with realistic 
interactions for which this measure 
to O? there non-integrable models 
for which a finite measure is 

A "FAT" FRACTAL 

Fig. 2. A single chaotic orbit of the standard 
map for k = 1 . l .  The picture was made by di- 
viding the energy surface into a 512 by 512 grid 
and iterating the initial condition 1 0  times. 
The squares visited by this orbit are shown 
in black. Gaps in the phase space represent 
portions of the energy surface unavailable to 
the chaotic orbit because of various quasiperi- 
odic orbits confined to tori, as seen in Fig. 1. 
(Figure courtesy of J. Doyne Farmer and David 
Urnberger, Los Alamos National Laboratory.) 
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continued from page 241 

For the Cantor set, if we look at the nth level and use the small interval of length 
e = (1 /3)", we know that N(e) = 1". Since as n -+ oo, e -+ 0, we can use 

In N (e) 11-12" In2 - d f - E - o (  - lim - ln; ) = n + ~ l n 3 ~  lim - - z' 

The simple Cantor set has, in effect, only a single scale because the factor of 113 
is always used in constructing successive levels of the set. In contrast, fractals that arise 
in chaotic dynamical systems have a range of scales and, typically, different scalings 
apply to different parts of the set; as a consequence, these more complex sets are 
sometimes termed multifractals. In his original work on the logistic map, Feigenbaum 
defined and discussed a scaling function that characterized these differences. Recently, 
a related analytic technique~called the f (a )  approach-has been used to provide a 
detailed understanding of the many different scalings occurring in a variety of chaotic 
dynamical systems. 

Although these constructions and techniques may seem to be just mathematical 
manipulations, nature abounds with structures that repeat themselves on many differ- 
ent scales and hence have approximate fractal structure. Familiar examples include 
clouds, lightning bolts, ferns, and, as shown in Fig. 11, snowflakes. Less familiar but 
technologically significant examples include the growth of dendritic crystals, dielectric 
breakdown in gas-filled cells, and "viscous fingering" in certain two-fluid flows. 

A laboratory experiment illustrating this last phenomenon (Fig. 12) consists of 
a flat, effectively two-dimensional, cylindrical cell containing a high-viscosity fluid. 
An inlet in the center of the cell permits the injection under pressure of a second, 
less viscous fluid (in this case, water). Instead of smoothly and uniformly replacing the 
viscous fluid in the cell, the water splits into the highly branched, coral-like fractal object 
shown in Fig. 12. Using a box-counting technique similar to that used to measure the 
dimension of the Cantor set, one finds that the fractal dimension of the viscous finger 
is 1.70 Â 0.05. Hence, although it is composed of many thin but highly branched 
segments, the viscous finger possesses a fractional dimension closer to that of an area 
(d = 2) than that of a line (d = 1). 

To understand the processes that create such structures, one can use experimental 
mathematics to study specific physical models. One such study (Fig. 13) depicts the 
development of a fractal pattern on a triangular lattice. The model underlying the 
pattern depends primarily on the local pressure gradients driving the "fluid," but it also 
incorporates the effects of fluctuations (via a noise parameter) and of anisotropy. The 
study shows clearly that all the patterns grow primarily at the tips; almost no growth 
occurs in the "fjord" regions. 

Figures 13a and 13b are examples of the fractal structures found when the noise 
parameter is held constant but the anisotropy k is considerably decreased. Notice the 
striking qualitative similarity between Figs. 11 and 13a. Interestingly, the fractal 
dimension of both Figs. 13a and 13b is about 1.5; it is independent of k.  In Figs, 13c and 
13d the anisotropy is held fixed but the noise is decreased. Here the fractal dimension 
of both is about 1.7. 

Figure 13 makes clear that df alone is not sufficient to characterize a fractal, for 
although both Figs. 13a and 13b have df = 1.5, there are obvious visual differences. 
Mandelbrot has defined a number of higher order geometric properties-for example, 
l a m r i t y ,  a measure of the typical size of the holes in the fractal-that can be used 
to characterize fractals more precisely. Lacunarity and other higher-order features are, 
in effect, geometric restatements of our earlier remarks that multifractals generated by 
chaotic dynamical systems have a range of scalings and that f (a) and related analytic 
techniques can be used to study these scalings. A generally unsolved challenge in this 
area is the fractal inverse problem: given f (a)  or related quantities, to what extent can 
one reconstruct the actual fractal set, including perhaps the order in which the points 
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of the set are generated dynamically? 

Practicalities. The impacts of deterministic chaos and fractals are only now beginning 
to be felt throughout science. The concepts that even simple systems can exhibit 
incredibly complicated behavior, that simple rules can lead to enormously intricate 
geometric objects, and that this behavior and these objects can be quantified are now 
all widely appreciated and are being applied in many fields. 

The fractal viscous-fingering phenomenon (Fig. 12) is of enormous technological 
interest, for it represents a major barrier to the development of efficient advanced oil- 
recovery techniques. Nearly half the oil deposited in limestone or other porous media pig  ll. The snowflake is an example of a 
is typically unrecovered because it remains stuck in the pores. To force out this oil, fractal structure in nature. (photos reprinted 
water is injected into a second well nearby. Viscous fingering limits the effectiveness of from Snow Crystals by W. A. Bentley and W. 

this technique, because when one of the thin fingers of water breaks through from the J- Humpreys with Permission of Dover Publi- 

injector to the recovery well, only injected water rather than oil is thereafter recovered. cations.) 

Clearly a full understanding of this fractal phenomenon and ways to control it are of 
considerable economic importance. 

Similarly, a direct application of fractals occurs in the design of the toughened 
ceramics used as engine parts. These special ceramics are designed to tolerate flaws, 
such as voids and cracks, without breaking into pieces. The flaws arise primarily from 
voids that develop during the sintering process and fractures that arise chiefly from the 
use of hard materials when machining the ceramics. By adding secondary constituents 
to the ceramics, propagating cracks can be forced to move through the ceramic along 
tortuous, convoluted routes, causing more energy to be expended than if the route were 
smooth and regular. Hence, for a given impulse, an irregular crack does not propagate 
as far through the ceramic and does less overall damage. Convoluted routes should 

VISCOUS FINGERING 

lead to cracks in the form of complex fractal patterns. Indeed, microscopic studies of Fig. 12. A fractal structure formed by inject- 

high performance ceramics have revealed such patterns and established that the higher ing water under pressure into a high-viscosity 

the fractal dimension of the cracks, the tousher the ceramics. fluid. The fractal dimension of this object .. 
The results of deterministic chaos are also being applied across a broad range of has been calculated be df = * 0'05' 

(Figure courtesy of Gerard Daccord and Jo- 
disciplines. Experimentally, high-precision measurements of chaotic dynamics in many 

harm Nittmann, Etudes et Fabrication 
types of fluid flows, current and voltage responses of semiconductors and other solid- Schlumberger, France, and ,,. Eugene Stanley, 
state electronic devices, and cardiac arhythymias have established the importance of Boston University.) 
dissipative chaos in fluid dynamics, condensed-matter physics, and medicine. Indeed, 
recent medical experiments have suggested that many physiological parameters vary 
chaotically in the healthy individual and that greater regularity can indicate a patho- 
logical condition; for example, normally chaotic oscillations of the densities of red and 
white blood cells become periodic in some anemias and leukemias. Hamiltonian chaos 
finds a direct application in accelerator design, where the potential loss of an appar- 
ently stable beam due to subtle long-time phenomena such as "Arnold diffusion" (see 
"Hamiltonian Chaos and Statistical Mechanics") is a vital issue of technology. 

The central theoretical challenge in "applied chaos" is to develop deterministic 
chaotic models to explain these diverse phenomena. Rather than focusing on the details 
of specific applications, let me describe two broader problem areas of current research. 

First, although we have stressed the randomness and unpredictability of the long- 
time behavior of chaotic systems, it nonetheless remains true that these systems are 
deterministic, following laws that involve no external randomness or uncertainty. Thus, 
it is possible to predict the behavior for short times, if the equations of motion are 
known. The analytic solution of the logistic map for r = 4 is a clear illustration; 
given two initial conditions known to, say, 10-bit accuracy, one can predict the relative 
positions-albeit with exponentially decreasing accuracy-for 10 iterations of the map. 
The subtler problem, currently under intense investigation, occurs when one observes 
that a system is deterministically chaotic but does not know the form of the underlying 
equations: can one nonetheless use the basic determinism to make some prediction? 
In view of the clear value of such predictive techniques-consider the stock market- 
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substantial efforts are being focused on this question. 
Second, and at a still broader level, are the related issues of universality and mode 

reduction in chaos, both of which we mentioned previously. Universality implies that 
for certain chaotic phenomena-such as the period-doubling cascade-the details of the 
system and the equations describing it are irrelevant: the observed complex behavior 
develops in a similar manner in every context, be it fluid dynamics, condensed-matter 
physics, or biology. Indeed, the term universality is borrowed from the statistical me- 

A FRACTAL SIMULATION 

Fig. 13. The model used in the simulation to 
form these fractal patterns uses local pressure 
gradients to "drive the fluid" across a trian- 
gular lattice. The growth patterns of the ob- 
jects are indicated by the color coding; the first 
one-sixth of the sites to be occupied are white, 
the next one-sixth blue, then magenta, yellow, 
green, and finally red. The model also incorpo- 
rates the effects of fluctuations via the noise 
parameter u and of anisotropy via the param- 
eter k. The patterns in (a) and (b) have the 
same noise (o- = 0.02) but different anisotropy 
(k = 11 in (a) and k = 1.3 in (b)). The patterns 
in (c) and (d) have the same isotropy (k = 1) 
but the noise changes (from u = 0.5 in (c) 
to u = 0.005 in (d)). (Photos courtesy of Jo- 
hann Nittmann, Etudes et Fabrication Dowell 
Schlumberger, France, and H. Eugene Stanley, 
Boston University.) 

chanics of phase transitions, where it has been shown that the details of the microscopic 
interactions are irrelevant for most of the important properties of the transitions. In the 
context of chaos, universality also lends tremendous power to analyses of certain phe- 
nomena; in essence, the simplest example-for instance, the logistic map for period 
doubling~contains the critical features of the entire effect. 

The central idea of mode reduction can most easily be visualized in fluid flows. 
In any given fluid motion not all the (infinitely!) many possible modes are "active," 
so the effective phase-space dimension is much smaller than the full dimension of the 
equations. The case of laminar flow in which fluid moves en bloc is a trivial illustration. 
A more interesting and much less obvious example is observed in experiments on 
Couette-Taylor flows, in which fluid is contained between two concentric rotating 
cylinders. As the speed of relative rotation is increased, the flow forms bands of 
Taylor vortices. Further increases in the relative rotation causes the bands to develop 
"wobbling" instabilites and finally to be replaced by fully developed turbulence. In 
these experiments clever techniques (sometimes referred to as "geometry from a time 
series" and related to rigorous mathematical embedding theorems) have been used to 
extract phase-space information directly from a time series of measurements on a single 
dynamical variable. Such techniques have revealed strange attractors with effective 
phase-space dimensions on the order of five. In such experiments there are, in one 
sense, on the order of only five active modes. Mode reduction reduces the number of 
degrees of freedom being modeled to the minimum necessary to capture the essence of 
the motion. 

Several important aspects of the general problem of mode reduction should be 
clarified. First, techniques such as "geometry from a time series" offer no immediate 
information about the nature of the reduced modes nor about the effective equations 
governing their interactions. In general, obtaining such information remains an impor- 
tant open problem. 

Second, mode reduction is distinct from mode truncation. Specifically, we noted 
that the Lorenz equations were obtained by simply truncating the Fourier expansion 
of the full equations, hence ignoring certain demonstrably nonzero couplings. Ideally, 
the process of mode reduction should be deductive, controlled, and constuctive; that is, 
one should be able to derive the equations governing the reduced modes, to bound the 
error made in the reduction, and to "construct" the actual modes themselves. This, too, 
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remains an elusive goal, despite substantial recent progress. 
Third, if one is able to obtain a true mode reduction, the benefits are substantial. 

For instance, the parameters of the mode-reduced equations can easily be forced in 
a time-dependent manner, and the reduced equations themselves can be damped and 
driven. In this manner it may be possible to predict the behavior of the full original 
system, where the effects of such forcing may be difficult to determine. A specific 
instance of this technique has been carried out recently by Rabinowitz in the Soviet 

Union: using numerical experiments on mode-reduced equations as a guide, he was 
able to forestall the onset of turbulence in a nozzle flow by applying a periodic stress. 

Fourth, rigorous mathematical results on mode reduction have been obtained for a 
class of nonlinear reaction-diffusion equations that describe unstable chemical reacting 
fronts, such as flames. One important example is the so-called Kuramoto-Sivashinsky 
equation, which can be written in the form 

where 4(x, t) is the amplitude, as a function of position and time, of the phenomenon 
being described. Although this equation represents, in dynamical-systems parlance, 
an infinite-degree-of-freedom system, it is nonetheless rigorously true that in a box of 
finite length L a finite number of modes proportional to L are sufficient to capture the 
long-time dynamics arising from essentially any initial condition. Although the link 
is not yet fully constructive, the nature of these modes can be determined, and they 
are related to coherent structures observed for this equation. This general connection 
between mode reduction in chaotic systems and coherent structures in spatially extended 
dynamical systems will be a central issue in our discussion of complex configurations 
and pattern selection. 

Finally, the problem of mode reduction lies at the core of attempts to understand the 
relation between chaos and fully developed turbulence in fluids and plasmas. Chaos, as 
we have stressed, involves temporal disorder and unpredictability in dynamical systems 
with low effective phase-space dimension. Fully developed turbulence, in addition to 
the temporal disorder, involves disordered, random spatial structure on all scales (at least 
apparently). Further, different spatial regions of the turbulent system act independently, 
and spatial correlation functions are short-ranged. Thus the phase-space dimension of 
any attractor in fully developed turbulence appears, a priori, very high. 

For example, a recent numerical simulation of turbulent Poiseuille flow at a 
Reynolds number of 2800 suggests that the turbulent solutions to the Navier-Stokes 
equations for the flow do lie on a strange attractor, but one that has fractal dimension 
of about 400! Although it is comforting to know that the turbulence observed in this 
case can be described qualitatively by deterministic chaos, it is obviously disconcerting 

Los Alamos Science Special Issue 1987 



Nonlinear Science 

to contemplate trying either to analyze such flows experimentally or to model them 
theoretically in terms of a dynamical system with a 400-dimensional phase space. For 
higher Reynolds numbers this situation will become even worse. In the next section we 
will illustrate how mode reduction, coupled with a hierarchy of approximate equations, 
may make this situation more tractable. 

In sum, the remarkable insights of the past twenty-five years have led to the 
emergence of deterministic chaos and fractals as a second central paradigm of nonlinear 
science. The impact of this paradigm on our basic view of complexity in the world, as 
well as on technologies affecting our daily lives, will continue to be profound for the 
foreseeable future. 

Complex Configurations and Patterns 

When a spatially extended nonlinear system is driven far from equilibrium, the 
many localized coherent structures that typically arise can organize themselves into a 
bewildering array of spatial patterns, regular or random. Perhaps the most familiar 
example is turbulent fluid flow, in which the temporal behavior is chaotic yet one fre- 
quently observes patterns of coherent structures: recall the complex configuration of 
vortices surrounding the Red Spot in Fig. 3a. The process of pattern formation and 
selection occurs throughout nature, in nonlinear phenomena ranging from electromag- 
netic waves in the ionosphere through mesocale textures in metallurgy to markings on 
seashells and stripes on tigers. Thus, complex configurations and patterns represents a 
third paradigm of nonlinear science. Although somewhat less developed than solitons 
or chaos, the paradigm already promises to provide the basis for a unified understanding 
of nonlinear phenomena in many fields. 

Our previous discussion of dynamical systems provides a useful conceptual frame- 
work in which to approach the general problem of patterns. A typical extended nonlin- 
ear, nonequilibrium system will have many possible configurations or patterns; some of 
these will be stable, others unstable, and the vast majority metastable. Highly symmet- 
ric patterns may be accessible analytically, but general, anisotropic configurations must 
first be studied via experimental mathematics. In dissipative extended systems these 
patterns are loosely analogous to the attractors of simple dynamical systems-with the 
important proviso that they do not correspond to true asymptotic attractors because most 
are, in fact, merely metastable. Nonetheless, the multiple-attractor analogy correctly 
suggests that an extended nonlinear system has many basins of temporary attraction. In 
view of our results on the damped, driven pendulum, we expect the basin boundaries 
to be complicated, perhaps fractal, objects. As a result, the study of the dynamics of 
complex configurations and of the sequence of patterns explored, as well as of the pat- 
tern ultimately selected (if any), represents one of the most daunting challenges facing 
nonlinear science. 

At present this challenge is still being confronted primarily at the experimental 
level, both in actual physical systems and via numerical simulations, rather than analyt- 
ically. Hence we rely here chiefly on visual results from these experiments to indicate 
important aspects of the paradigm. 

Experiments and Numerical Simulations. Consider, as a first illustration, a gener- 
alization of a familiar example: the sine-Gordon equation, only now damped, driven, 
and with two spatial dimensions. This equation, which models certain planar magnetic 
materials and large-area Josephson junction arrays, has the form 

We can anticipate from our earlier discussion that this model will contain coherent 
structures (although not solitons, because the two-dimensional sine-Gordon equation is 
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not completely integrable). We can also expect the model to contain chaos because of 
the driving and damping forces. 

Four snapshots of the temporal development of the system are shown in Fig. 14 
for a = 0.1, r = 1.6, and w = 0.6. Although it may seem obvious, the use of color 
coding as a means of enhancing the visual interpretation should be mentioned; color 
graphics, especially in a high-speed, interactive mode, are not a frivolous luxury but, 
in fact, are among the most powerful tools of experimental mathematics. Here, for 

example, the color indicates the approximate value of 6. The initial annular structure 
of this system (Fig. 14a) eventually forms other patterns that are, in fact, oscillatory 
in time. Because the boundary conditions are periodic in both x and y ,  the system 
retains a high degree of symmetry as it evolves into four structures in a two-by-two 
pattern (Fig. 14b). Eventually, however, a "smearing" is detected parallel to the x axis 
(Fig. 14c) that leads to the striped configuration of Fig. 14d. No further qualitative 
change occurs after that. 

Because of the original symmetry of the problem, the emergence of a final pattern 
striped in the x direction rather than the y direction must depend on a slight asymmetry 
external to the equations themselves. Possibilities are a slight difference in the initial 
conditions for x and y due to computer round-off or an asymmetry in the solution 
algorithm. Such asymmetries can be viewed as external noise that leads to a config- 
uration that breaks the symmetry of the equations. The extreme sensitivity of certain 
pattern selection processes to external noise and to minor asymmetries has already been 
indicated in the fractal growth models of Fig. 13 and is observed experimentally in a 
wide variety of contexts, including the growth of dendrites such as the snowflakes of 
Fig. 11. 

SINE-GORDON EQUATION FOR 
TWO SPATIAL DIMENSIONS 

Fig. 14. Four snapshots of the temporal behav- 

ior of the two-dimensional sine-Gordon equa- 
tion. Red indicates values of 0 near 2 - ~ ,  blue 
indicates values near 0, and colors in the spec- 
trum between red and blue indicate intermedi- 
ate values. (a) The initial structure is annu- 
lar. (b) After a time equal to approximately 

100 units of the fundamental oscillation fre- 
quency of the system, the initial ring breaks 

into a symmetric, two-by-two pattern of four 
structures. (c) This last pattern is metastable 
and gradually slides off center, leading, at t - 
200, to a pattern that is clearly beginning to 
"smear" in the x-direction. (d) Eventually, for 

t - 300, the smearing has led to a striped, 
stable configuration. The parameters used in 
Eq. 29 to generate these pictures are ec = 0.1, 

r = 1.6, and u = 0.6. (Figures courtesy of 
Peter Lomdahl, Los Alamos National Labora- 

tory.) 
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RAYLEIGH-BERNARD 
CONVECTION PATTERNS 

Fig. 15. Patterns of convection-roll stream- 
ing are created here using shadowgraph tech- 
niques in an experiment in which silicone oil is 
heated from below. The dark lines correspond 
to ascending streams of fluid, the bright lines 
to descending streams. (Photos courtesy of 
Pierre Berge, Commissariat a ~ ' ~ n e r g i e  Atom- 
ique, France.) 

The emergence and evolution of configurations related to those seen in the numer- 
ical simulations has been the focus of many recent experiments involving Rayleigh- 
Benard convection. By using shadowgraph techniques that clearly distinguish ascending 
and descending streams of fluid, convection-roll structures are observed in silicone oil 
heated from below (Figs. 15 and 16). The asymmetric pattern of Fig. 15a is typi- 
cal of configurations that last for only a few minutes. On the other hand, the more 
symmetric pattern of Fig. 15b is more stable, maintaining its form for ten minutes or 

AN AVERAGE 
CONVECTION PATTERN 

Fig. 16. The first two of these Rayleigh-Ber- 
nard convection patterns (a and b) are snap- 
shots of the flow in the silicone oil experiment. 
whereas (c) is a sum of ten such instantaneous 
pictures. (Photos courtesy of Pierre Bergb, 
Commissariat a L'Energie Atomique, France.) 

more. Although one does not have a detailed understanding of the phenomenon, clearly 
boundary effects are causing the system to "pin" itself to these more stable configura- 
tions. Figure 16 demonstrates that a mean structure, or average pattern, can exist in 
such flows. The first two images (Figs. 16a and b) are snapshots of the flow, whereas 
the third (Fig. 16c) is a sum of ten such instantaneous pictures and clearly indicates the 
presence of a highly symmetrical average configuration. 

Fluid dynamics abounds with other examples of complex configurations and pattern 
formation. Particularly relevant in technological applications is shear instability, which 
occurs when a fluid moves rapidly past a fixed boundary or when two fluids move past 
each other at different velocities. The performance and fuel-efficiency of aircraft, for 
example, are strongly affected by the turbulent boundary layer formed as a consequence 
of shear instabilities. 

Figure 17 is a sequence of images of the "Kelvin-Helmholtz" shear instability 
simulated using the two-dimensional Euler equations that model compressible but 
inviscid fluid flow. (Strictly speaking, because the study does not resolve the thin 
turbulent boundary layer, it is technically a "slip-surface" instability.) The study reveals 
an incredible wealth of information, only some of which we will discuss here. Two 
streams of identical fluid flow past each other, both moving at the speed of sound. 
Initially, a small sinusoidal perturbation is given to the vertical velocity component of 
the flow at the boundary between the layers, and the resulting entrainment and roll-up 
phenomena that lead to the mixing of the two fluids is followed. 
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Shortly after the simulation starts, the roll-up of the boundary has already begun to 
generate coherent structures (Fig. 17a). These grow (actually, in a self-similar manner) 
until the periodic boundary conditions in the x direction cause the structures to interact 
(note the four vortex-like structures in Fig. 17b). In addition, sudden jumps in the 
intensity of the colors in the top and bottom regions reveal the presence of shock 
waves. The four vortices merge into two (Fig.17~) and thereafter entrain, forming 
a bound vortex pair (Fig. 17d). The roll-up phenomenon creates incredibly complex 

SHEAR INSTABILITY 

(fractal) structure from the initially smooth boundary. Thus, we see in Fig. 17 precisely 
the interplay between large-scale coherent structures and chaotic, fractal dynamics 
that typifies complex configurations in extended nonlinear systems. Further, although 
different in detail, Fig. 17d clearly resembles in outline the more familiar shape of 
Fig. 3a; art-in this case, computer art-is indeed imitating Nature. 

One feature common to all our previous examples is the limited number of 
coherent structures that participate in the observed patterns of the system. In each 
case, this limitation arises from the small size (relative to the scale of the coherent 
structures themselves) of the "box7'-be it computational or physical-in which the 
pattern-forming system is contained. 

An example in which this constraint is relaxed is a numerical simulation, carried 
out at Los Alarnos a decade ago by Fred Tappert, of the self-focusing instability that 
arises in the interaction of an intense laser beam with a plasma (Fig. 18). The instability 
is closely related conceptually to the mechanism by which solitons are formed in optical 
fibers and reflects an important difficulty in attempts to develop inertial confinement 
fusion. On a much different scale, this phenomenon leads to significant electromagnetic 
disturbances in the ionosphere. 

Fig. 17. Two streams of identical fluid flow 
past each other with the top stream (colored 
green to blue) moving to the right at Mach 1 

(the speed of sound) and the bottom stream 
(colored red to purple) moving to the left also 
at Mach 1. The boundary between layers is a 
yellow line, and, initially, a small vertical sinu- 
soidal velocity perturbation is applied at this 
boundary with the colors indicating the initial 
y value of a given bit of fluid. The series show 
the roll-up of the boundary (a) and the develop- 
ment of coherent structures in the form of vor- 
tices. By (d), a bound vortex pair has formed. 
(Figures made at Lawrence Livermore National 
Laboratory by Paul Woodward, University of 
Minnesota, and David Helder.) 

Los Alamos Science Special Issue 1987 



Nonlinear Science 

The particular equation used in the simulation is a two-space-dimension variant of 
the nonlinear Schrodinger equation (Eq. 12). Here the equation has the specific form 

where E = E(x, y ,  t )  is the electric field envelope function. For small IE 12, the equation 
contains an effective cubic nonlinearity and thus becomes the direct two-dimensional 

CAVITONS: 
SELF-FOCUSING INSTABILITIES 

Fig. 18. The development of a self-focusing 

instability in a laser beam passing through a 

plasma. These frames, taken from a computer- 

generated movie, show both a contour plot 

(upper left) and a projected plot of the laser 

intensity across the profile of the beam. (a) 
Initially, the beam is essentially uniform with 

a small amount of random spatial "noise," but 

as it moves into the plasma, the self-focusing 

instability generates filaments of high intensity 

that (b) grow dramatically as the beam pro- 

gresses further. (Photos made at Los Alamos 

by Fred Tappert, University of Miami.) 

generalization of Eq. 12. As E approaches infinity, the nonlinearity saturates, and 
Eq. 30 becomes effectively linear. 

From a random initial condition of spatial white noise (Fig. 18a), a complex 
configuration involving a large number of coherent structures develops (Fig. 18b). 
Having observed these complex patterns involving many coherent structures, Tappert 
went on to isolate the individual coherent structures-now known as cavitons-and to 
study their interactions numerically. Since the dynamics can not be properly appreciated 
without showing the time evolution, I will not attempt to describe it here; however, 
this study is an excellent example of using experimental mathematics to unravel the 
role that analytically inaccessible coherent structures play in the formation of complex 
configurations. 

Analytic Developments. Our brief pictorial survey of numerical and experimental 
studies of pattern formation should make clear the daunting nature of the general 
problem. Thus it is hardly surprising that current analytic approaches focus on special 
and isolated instances of pattern formation that reduce the problem to a more tractable 
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form. Although much remains to be done, this "divide and conquer" philosophy has 
recently demonstrated such substantial promise that, in the next decade, we should 
witness a revolution for patterns comparable to those for solitons and chaos. 

One line of analytic attack is to start with a system that has exact solitons-the 
one-dimensional sine-Gordon or nonlinear Schrodinger equations, for example. One 
then perturbs the system with driving and damping forces and studies the patterns 
that emerge from the evolution of the analytically known coherent structures under 
the influence of the chaotic dynamics. This approach has been used extensively in 
the case of the damped, driven sine-Gordon equation, and a very rich phenomenology 
has developed. However, detailed quantitative understanding, even in the case of a 
perturbed integrable system, can only be produced at present if the purely analytic 
approach is guided and supplemented by numerical simulations. 

To describe other semi-analytic approaches, let me focus on pattern formation in 
fluid flows. I shall discuss three related techniques that derive approximate or effective 
equations appropriate to specific situations called the amplitude-, phase-, and prototype- 
equation techniques. 

As previously observed, a nonlinear system often exhibits bifurcations or sharp 
transitions in the qualitative behavior of its solutions as a function of one of its 
parameters. The Rayleigh-Benard instability in a fluid heated from below is one such 
case (Figs. 15 and 16). When the rate of heating is less than a certain threshold, the 
fluid simply conducts the heat from the hot bottom to the cooler top, in effect acting 
like a solid object. At a critical value of the heating rate, this conducting state becomes 
unstable and convection-the familiar rolling motion that can be seen in boiling water- 
sets in. This transition is the nonequilibrium analog of a phase transition. We can 
model the temporal and spatial structure of the transition with a phenomenological 
equation written in terms of a parameter that describes the amplitude of the convecting 
state. This convection order parameter will be zero below threshold and nonzero 
above. A variety of near-threshold phenomena have been treated successfully using 
such amplitude equations. 

Now consider a nonlinear system already in a state with an overall, regular pattern: 
for example, a sequence of straight convection rolls in a large box or the rectangular 
arrangement of convection cells in Fig. 16c. Let this pattern be described by a dominant 
wave vector (or vectors) that we call ko. Many patterns close to the initial one can 
be studied by considering slow spatial and temporal modulation of ko. The resulting 
phase equations can be viewed as the nonequilibrium analogs of hydrodynamics since 
they apply to low-frequency, long-wavelength motions near a given state. Again, such 
phase equations have been used to .analyze many specific fluid flows. 

Prototype equations, although perhaps motivated by specific fluid motions, are 
not necessarily strictly derivable from the fundamental Navier-Stokes equations but 
rather are intended to capture the essence of certain nonlinear effects. More precisely, 
prototype equations often serve as a means of gaining insight into competing nonlinear 
effects and are thus extremely important in developing analytic understanding. The 
Korteweg-deVries equation (Eq. lo), which played a central role in the discovery 
of solitons, can be viewed as an example of a prototype equation. That it is also 
derivable for surface waves in shallow, narrow channels is an added bonus. Similarly, 
the Kuramoto-Sivashinsky (KS) equation (Eq. 28)-is another prototype equation. 

Very recently, pattern formation in convecting fluid flows in large containers 
has been studied using the Kolmogorov-Spiegel-Sivashinsky, or KSS, equation-a 
generalization of the original KS equation. Because some very interesting results about 
the interplay of coherent structures and chaos have come from these studies, I will use 
the KSS equation to illustrate the prototype-equation technique. 

The specific form of the equation is 
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where a ,  (3, 7, and 6 are adjustable parameters. This equation models large-scale 
unidirectonal flow. An example is the Kolmogorov flow in which an effectively two- 
dimensional viscous fluid is subjected to a unidirectional external force field periodic 
in one of the spatial directions. Such a flow can be realized in the laboratory using thin 
layers of electrolytic fluids moving in a periodic magnetic field. 

In Eq. 31 4> = 4>(x, t) is the fluctuating part of the stream function (that is, the 
stream function minus the mean periodic field component), 94>/9t is the familiar 
local derivative for the fluid motion, (34 represents the classical linear damping of 
the fluctuations, 7(9(A/9x)2 is the convective derivative for the fluid motion in an 
unfamiliar form, and the last terms describe viscosity effects. 

One can see the role of the local and convective derivative terms more directly 
by differentiating Eq. 31 with respect to x and considering the gradient of the stream 
function: u(x, t) = 94>/9x, which is related to the velocity. In the differentiated 
equation, the two terms assume the form Qu/Qt+l'yuQu/Qx, familiar from, for example, 
the Korteweg-deVries equation (Eq. 10). Note that the convective term in Eq. 31 
increases rapidly when (A is varying rapidly in x (that is, for large wavenumbers k), 
correctly suggesting that this term leads to a flow of energy from large to small spatial 
scales. 

A careful examination of the viscosity effects-given by the final three terms in 
Eq. 3 1-reveals the interplay and competition essential to the pattern-forming properties 
of this model. The lowest-order diffusion term, a84>/9x2, has, since a > 0, the wrong 
sign for stable diffusion and hence leads to an exponential growth of the solution for all 
wave numbers k. The higher order linear diffusion term 9*4>/9x4, controls the growth 
for large k. As a consequence, only a certain range of wave numbers (0 < k < kc) 
exhibits the linear instability that leads to rapid growth. This negative viscosity region 
causes a flow of energy from small to larger spatial scales and thus creates the coherent 
structures observed in the equations. In turn, the growth of these structures is limited 
by the nonlinear terms-in particular, by the convective derivative terms-and the 
resulting competition between the negative viscosity and convective terms provides a 
mechanism for energy to cycle back and forth between small and large scales. Finally, 
the nonlinear viscosity term, 6 g ( 9 4 > / 9 ~ ) ~ ,  provides an important local variation in 
viscosity; in regions where 84>/9x is small, the effective local viscosity is negative, but 
as 94/9x grows, the nonlinearity leads to a locally positive viscosity and to normal 
dissipation of energy at small scales. 

For the KSS equation, recent analytic studies have shown that the full partial 
differential equation is strictly equivalent to a set of coupled ordinary differential 
equations corresponding to a finitedimensional dynamical system. Further, the phase- 
space dimension of this dynamical system is proportional to the number of linearly 
unstable modes and hence increases linearly with the length of the system L. In addition, 
the finite dynamical system possesses a universal strange attractor with fractal dimension 
also proportional to L. These results are concrete examples of the mode-reduction 
program, and their attainment in an equation involving local negative viscosity effects 
marks a step forward in analytic understanding of turbulence. However, as in the case 
of the KS equation, the results are not of themselves sufficient to identify the natural 
coherent structures that arise in Eq. 3 1 nor to relate them directly to the reduced modes. 

To search for the coherent structures, extensive numerical simulations of the KSS 
equation are currently in progress. Figure 19 depicts one solution (for a = 2, (3 = 0.15, 
7 = 1, and 6 = 0.58) with a system size such that there are fifty unstable modes. The 
black cross-hatched structures are regions of (spatially homogeneous) chaos. Note that, 
with the horizontal axis representing time and the vertical axis representing position, 
these regions often propagate through the system, as indicated by the diagonal "motion" 
of the cross-hatched areas. 

The most striking features in Fig. 19 are the orange horizontal bands, which 
intermittently appear and disappear at various locations and times within the system. 
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These are relatively quiescent, large-scale spatial subdomains and are the candidates for 
the coherent structures. Notice that the propagating chaotic regions do not penetrate 
these structures. However, as suggested in particular by the region around the long-lived 
coherent structure in the lower right comer, one may be able to describe interactions 
of the propagating chaotic regions with the coherent structures. Such interactions may 
involve phase shifts (as in the case of solitons) as well as creation and annihilation of 
both the propagating chaos and the coherent structures. At present, these and related 

THEKSSSYSTEM 

Fig. 19. This solution of the KSS equation 
(for a = 2, f i  = 0.15, 7 = 1, and 6 = 0.58 
in Eq. 31) has both regions of chaos (cross- 
hatched) and regions of relatively quiescent 
behavior (orange). Since time is represented 
by the horizontal axis and the spatial vari- 

able by the vertical axis, the diagonal "mo- 
tion" of crosshatched areas represents prop- 
agation of these chaotic regions through the 
system. (Photo courtesy of Basil Nicolaenko 
and Hughes Chate, Los Alamos National Lab- 
oratory.) 

questions are under active investigation. 
From our discussion it is clear that, although exciting results are beginning to 

appear, development of the paradigm of complex configurations and pattern formation 
will occupy researchers in nonlinear science for years to come. It is perhaps of interest 
to suggest a few of the broad questions that must be addressed. 

To what extent can the complex structures and patterns be thought of as superposi- 
tions of coherent structures, and in what "space" can these structures be superposed? In 
this regard, we know that for weakly perturbed soliton-bearing systems, the appropri- 
ate space in which approximate superposition holds is the inverse scattering transform 
space. Further, some recent studies suggest that certain turbulent flows can usefully be 
decomposed as sums of terms, each having vorticity parallel to the velocity. 
0 What is the dynamics of competition among patterns? How does this competition 
depend on the nature of the interactions among individual coherent structures? For what 
systems can one view the different patterns as local minima in a "pattern accessibility" 
space? What can one say about the basins of attraction in this space? 

In systems with constrained geometry-such as the fluid experiment of Figs. 15 
and 16Ã‘ca one understand quantitatively the observed selection of more symmetric 
patterns over less symmetric ones? Here the analogy to pinning phenomena in solid 
state systems may be useful. 
0 For what pattern-forming systems can one construct a hierarchy of equations in 
which successive levels of approximation lead downward from the Navier-Stokes equa- 
tions through an approximate partial differential equation to a finite set of coupled or- 
dinary differential equations? How can one match the solutions across various levels 
of this hierarchy? Such matching will be essential, in particular to understand what 
happens when the effective equations lower in the hierarchy break down. 
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What can one say about pattern formation in fully-developedi th~~~-dimensional 
turbulence? For the full Navier-Stokes equations, can anything analogous to the 
competing mechanisms in the KSS equation be identified, so that both a cycle involving 
a flow of energy from large to small spatial scales and the re-PmergenCe of large-scale 
coherent structures can exist? If so, this cycle could form th? basis for a "t~bukmce 
engine," which would explain at least the major features of transport in turbulent flows. 

Since most of our remarks have focused on problems in fluid dynamics, it is im- 
portant to re-emphasize the broad impact of our last paradigm- The complex fractal 
structures observed in ceramic cracks and in oil recovery pr~blems, although treated 
for convenience in our discussion of fractals, are, in fact, more accurately vkwed 
as examples of patterns. Similarly, dendritic growth is a solidification Process criti- 
cally dependent on a pattern selection mechanism that is itself exquisitely sensitive to 
anisotropy and extrinsic noise. The development of mesoscale textures-that is, Pat- 
terns larger than the atomic scale but yet not macroscopic-remains an important issue 
for metallurgy. 

In fact, in the microscopic theories of solid state materials, the n ~ h a n i s m  under- 
lying pattern dynamics is a question not yet fully resolved. fiere, in distinction to the 
case of fluids, one does not have a fundamental model such as the Navier-Stokes equa- 
tions to rely on, so one cannot naively assume diffusive c o u e g  among the Patterns. 
Instead, a variety of possible mechanisms must be looked at ~ l o s e l ~ .  

In biology, pattern formation and selection is ubiquitous, with applications from 
the cellular to the whole organism level. And in ecology, nodlinear reaction-diffusion 
equations suggest spatial patterns in predator-prey distributions and in the spread of 
epidemics. 

To conclude this section, I will look at an intriguing feat0re of nonlinear Pattern- 
forming systems-the property of pattern self reproduction-using a celhdar automaton. 
Cellular automata are nonlinear dynamical systems that are discrete in both space and 
time and, importantly, have, at each site, a finite number Of state values (allowed 
values of the dependent variable). Such systems were i n v e ~ t d  an^ first explored, 
by John von Neumann and Stan Ulam. Currently, they are being studied both for 
their fascinating intrinsic properties and for a number of appli+tiOns' including Pattern 
recognition. They are also being used as novel computation$l algorithms for solving 
continuum partial differential equations (see "Discrete Fluids" for the example of lattice- 
gas hydrodynamics). 

Figure 20 shows four stages in the growth of a self-repr0ducing Pattern f ~ u n d  in 
a cellular atuomaton with eight possible states per site. At e a ~ h  step in time, the new 
state of a given cell is determined by a small set of rules based on the current state of 
the cell and the state of its nearest four neighbors on a squar'e lattice. The particular 
pattern shown generates copies of itself, forming a colony. On an infinite lattice the 
colony would continue to grow forever. Despite its simplicity and the rigidity of its 
predetermined rules, the self-reproduction of this automaton is intriguingly reminiscent 
of the development of real organisms, such as coral, that groW in large colonies. 

The Future of Nonlinear Science 

From the many open questions posed in the previous sections9 it should be clear that 
nonlinear science has a bright and challenging future. At a fundamental level issues such 
as the scaling structure of multifractal strange sets, the basis far the ergodic hypothesis, 
and the hierarchy of equations in pattern-forming systems r e g i n  unresolved. On the 
practical side, deeper understanding of the role of complex cdnfigurations in turbulent 
boundary layers, advanced oil recovery, and high-performance ceramics would provide 
insight valuable to many forefront technologies. And emerging solutions to problems 
such as prediction in deterministically chaotic systems or modeling fully developed 
turbulence have both basic and applied consequences. Further, the nonlinear revolution 
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promises to spread to many other disciplines, including economics, social sciences, and 
perhaps even international relations. 

If, however, one had to choose just one area of clearest future opportunity, one 
would do well to heed another of Stan Ulam's well-known bans mots: 

"Ask not what mathematics can do for biology, 
Ask what biology can do for mathematics." 

CELLULAR AUTOMATON 

If we replace "mathematics" with "nonlinear science," Stan's comment becomes even 
more appropriate to the present situation. We have already seen the beginnings of 
an understanding of many aspects of morphology, from fractal structures in ferns to 
nonlinear pattern-selection models for human digits. Similarly, the role of chaos in 
biological cycles, from heartbeats to cell densities, is rapidly being clarified. And the 
basic observation that incredibly complex behavior-including both pattern formation 
and self-reproduction~can emerge in systems governed by very simple rules has 
obvious implications for modeling biological phenomena. 

But the greatest challenge is clearly to understand adaptation, learning, and evo- 
lution. Adaptive complex systems will have features familiar from conventional dy- 
namical systems, including hierarchical structures, multiple basins of attraction, and 
competition among many metastable configurations. In addition, they must also have a 
mechanism for responding to, and taking advantage of, changes in their environment. 

One approach to adaptation is to construct an explicit temporal hierarchy: one 
scale describes the actual dynamics and a second, slower time scale allows for changes 
in the nonlinear equations themselves. Models for the human immune system and for 
autocatalytic protein networks are among the prospective initial applications for this 
concept. 

A second approach to adaptation, sometimes termed connectionism, is based on 
the idea that many simple structures exhibit complex collective behavior because of 
connections between the structures. Recent specific instances of this approach include 
mathematical models called neural networks. Although only loosely patterned after 

Fig. 20. This cellular automaton consists of a 
grid of square cells with each cell able to take 
on any of eight possible states (indicated by 
different colors). (a) The basic building block 
of a repeating pattern for this automaton is 
a hollow square occupying an area of 10 by 
15 cells with a tail that develops (b) until it 

produces a second hollow square. (c) The 
pattern continues to grow in time until (d) it 
has produced a large colony of the original 

pattern. (Figures courtesy of Chris Langton, 
Los Alamos National Laboratory.) 
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true neurological systems, such networks show remarkable promise of being able to 
learn from experience. A related set of adaptive models, called classifier systems, show 
an ability to self-generate a hierarchy of behavioral rules: that is, the hierarchy is not 
placed a priori into the system but develops naturally on the basis of the system's 
experience. In general, connectionist models suggest a resolution of the long-standing 
issue of building a reliable computer from unreliable parts. 

In all these future developments, the tripartite methodology incorporating experi- 
mental mathematics, real experiments, and novel analytic approaches will continue to 
play a critical role. One very exciting prospect involves the use of ultraspeed interactive 
graphics, in which enormous data sets can be displayed visually and interactively at 
rates approaching the limits of human perception. By using color and temporal evo- 
lution, these techniques can reveal novel and unexpected phenomena in complicated 
systems. 

To insure the long-term success of nonlinear science, it is crucial to train young 
researchers in the paradigms of nonlinearity. Also, interdisciplinary networks must be 
fostered that consist of scholars who are firmly based in individual disciplines but are 
aware of, and eager to understand, developments in other fields. 

In all these respects, nonlinear science represents a singularly appropriate intel- 
lectual legacy for Stan Ularn: broadly interdisciplinary, intellectually unfettered and 
demanding, and-very importantly-fun. 4 
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